• Title/Summary/Keyword: Discretization Scheme

Search Result 184, Processing Time 0.053 seconds

A boundary element approach for quasibrittle fracture propagation analysis

  • Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.439-452
    • /
    • 1999
  • A simple numerical scheme suitable for tracing the fracture propagation path for structures idealized by means of Hillerborg's classical cohesive crack model is presented. A direct collocation, multidomain boundary element method is adopted for the required space discretization. The algorithm proposed is necessarily iterative in nature since the crack itinerary is a priori unknown. The fracture process is assumed to be governed by a path-dependent generally nonlinear softening law. The potentialities of the method are illustrated through two examples.

Parallelization of 3-dimensional Multigrid DADI Method (3차원 다중격자 DADI 방법의 병렬처리)

  • Seong Chun-Ho;Park Su-Hyeong;Gwon Jang-Hyeok
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.49-54
    • /
    • 1998
  • 3-dimensional Euler solver is parallelized. The spatial discretization method is the 2nd order TVD scheme and DADI method with multigrid is used as a time integration. In order to parallelize this solver, the domain decomposition method with overlapped grid and message passing techniques are used. The informations on the each inter-processor bound-aries are communicated with MPI library. Finally, the parallel performance repsented by calculating the ONERA M6 wing at transonic flow condition using CRAY T3E and C90.

  • PDF

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

Ripple Analysis and Control of Electric Multiple Unit Traction Drives under a Fluctuating DC Link Voltage

  • Diao, Li-Jun;Dong, Kan;Yin, Shao-Bo;Tang, Jing;Chen, Jie
    • Journal of Power Electronics
    • /
    • v.16 no.5
    • /
    • pp.1851-1860
    • /
    • 2016
  • The traction motors in electric multiple unit (EMU) trains are powered by AC-DC-AC converters, and the DC link voltage is generated by single phase PWM converters, with a fluctuation component under twice the frequency of the input catenary AC grid, which causes fluctuations in the motor torque and current. Traditionally, heavy and low-efficiency hardware LC resonant filters parallel in the DC side are adopted to reduce the ripple effect. In this paper, an analytical model of the ripple phenomenon is derived and analyzed in the frequency domain, and a ripple control scheme compensating the slip frequency of rotor vector control systems without a hardware filter is applied to reduce the torque and current ripple amplitude. Then a relatively simple discretization method is chosen to discretize the algorithm with a high discrete accuracy. Simulation and experimental results validate the proposed ripple control strategy.

Mesh Reconstruction Using Redistibution of Nodes in Sub-domains and Its Application to the Analyses of Metal Forming Problems (영역별 절점재구성을 통한 격자재구성 및 소성가공해석)

  • Hong, Jin-Tae;Yang, Dong-Yol
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.4
    • /
    • pp.255-262
    • /
    • 2007
  • In the finite element analysis of forming process, objects are described with a finite number of elements and nodes and the approximated solutions can be obtained by the variational principle. One of the shortcomings of a finite element analysis is that the structure of mesh has become inefficient and unusable because discretization error increases as deformation proceeds due to severe distortion of elements. If the state of current mesh satisfies a certain remeshing criterion, analysis is stopped instantly and resumed with a reconstructed mesh. In the study, a new remeshing algorithm using tetrahedral elements has been developed, which is adapted to the desired mesh density. In order to reduce the discretization error, desired mesh sizes in each lesion of the workpiece are calculated using the Zinkiewicz and Zhu's a-posteriori error estimation scheme. The pre-constructed mesh is constructed based on the modified point insertion technique which is adapted to the density function. The object domain is divided into uniformly-sized sub-domains and the numbers of nodes in each sub-domain are redistributed, respectively. After finishing the redistribution process of nodes, a tetrahedral mesh is reconstructed with the redistributed nodes, which is adapted to the density map and resulting in good mesh quality. A goodness and adaptability of the constructed mesh is verified with a testing measure. The proposed remeshing technique is applied to the finite element analyses of forging processes.

PARAMETRIC INVESTIGATIONS ON THE DOUBLE DIFFUSIVE CONVECTION IN TRIANGULAR CAVITY

  • Kwon, SunJoo;Oh, SeYoung;Yun, Jae Heon;Chung, Sei-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.419-432
    • /
    • 2007
  • Double-diffusive convection inside a triangular porous cavity is studied numerically. Galerkin finite element method is adopted to derive the discrete form of the governing differential equations. The first-order backward Euler scheme is used for temporal discretization with the second-order Adams-Bashforth scheme for the convection terms in the energy and species conservation equations. The Boussinesq-Oberbeck approximation is used to calculate the density dependence on the temperature and concentration fields. A parametric study is performed with the Lewis number, the Rayleigh number, the buoyancy ratio, and the shape of the triangle. The effect of gravity orientation is considered also. Results obtained include the flow, temperature, and concentration fields. The differences induced by varying physical parameters are analyzed and discussed. It is found that the heat transfer rate is sensitive to the shape of the triangles. For the given geometries, buoyancy ratio and Rayleigh numbers are the dominating parameters controlling the heat transfer.

  • PDF

Heat Transfer Analysis of Composite Materials Using MLS Finite Difference Method (MLS 유한차분법을 이용한 복합재료의 열전달문제 해석)

  • Yoon, Young-Cheol
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.2-7
    • /
    • 2008
  • A highly efficient moving least squares finite difference method (MLS FDM) for heat transfer analysis of composite material with interface. In the MLS FDM, governing differential equations are directly discretized at each node. No grid structure is required in the solution procedure. The discretization of governing equations are done by Taylor expansion based on moving least squares method. A wedge function is designed for the modeling of the derivative jump across the interface. Numerical examples showed that the numerical scheme shows very good computational efficiency together with high aocuracy so that the scheme for heat transfer problem with different heat conductivities was successfully verified.

  • PDF

VOLUME CAPTURING METHOD USING UNSTRUCTURED GRID SYSTEM FOR NUMERICAL ANALYSIS OF MULTIPHASE FLOWS (다상유동 해석을 위한 비정렬격자계를 사용한 체적포착법)

  • Myong, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.201-210
    • /
    • 2009
  • A volume capturing method using unstructured grid system for numerical analysis of multiphase flows is introduced in the present paper. This method uses an interface capturing method (CICSAM) in a volume of fluid(VOF) scheme for phase interface capturing. The novelty of CICSAM lies in the adaptive combination of high resolution discretization scheme which ensures the preservation of the sharpness and shape of the interface while retaining boundedness of the field, and no explicit interface reconstruction which is perceived to be difficult to implement on unstructured grid system. Several typical test cases for multiphase flows are presented, which are simulated by an in-house solution code(PowerCFD). This code employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with CICSAM. It is found that the present method simulates efficiently and accurately complex free surface flows such as multiphase flows.

  • PDF

Numerical Study on the Shock Wave Focusing of Elliptic Reflectors (타원형 반사면에 의한 충격파 초점 변화에 관한 수치적 연구)

  • Ko C. C.;Shim E. B.;Sah J. Y.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 1999
  • In this study, the shock wave focusing of an elliptic reflector is numerically simulated by solving the Euler equations. The numerical method is the second order upwind TVD scheme with a finite volume discretization. For the verification of the present method, we simulate the moving shock wave passing through a two-dimensional corner. The computed isopycnics are compared with the earlier experiment. Numerical results of the elliptic reflectors show that the density and pressure at the focusing point increase linearly as the aspect ratio of the reflector becomes deep. On the other hand, the gas dynamic focal length decreased with the increase of the reflector aspect ratio.

  • PDF

Numerical Simulation for the Advection Equation on the Sphere by Sphere-Lagrangian Method (Semi-Lagrangian법을 이용한 구 좌표계에서의 이류 방정식 해석)

  • Yoon Seong Y.
    • Journal of computational fluids engineering
    • /
    • v.9 no.3
    • /
    • pp.8-17
    • /
    • 2004
  • A Semi-Lagrangian method based on CIP(Cubic Interpolated Pseudoparticle)method is proposed and it is applied to solve the two dimensional advection equation. Especially the attentions are given to settle the pole problem and to enhance the accuracy in solving the advection equation on the spherical coordinate system. Tn this algorithm, the CU method is employed as the Semi-Lagrangian method and extended to the spherical coordinate system. To enhance the accuracy of the solution, the spatial discretization is made by CIP method. The mathematical formulation and numerical results are also described. To verify the efficiency, accuracy and capability of proposed algorithm, two dimensional rotating cosine bell problem and the frontogenesis problem are simulated by the present scheme. As results, it is confirmed that the present scheme gives an accurate solution and settles the pole problem in the advection equation on the sphere.