• 제목/요약/키워드: Discrete-finite element analysis

검색결과 165건 처리시간 0.02초

Modelling dowel action of discrete reinforcing bars for finite element analysis of concrete structures

  • Kwan, A.K.H.;Ng, P.L.
    • Computers and Concrete
    • /
    • 제12권1호
    • /
    • pp.19-36
    • /
    • 2013
  • In the finite element analysis of reinforced concrete structures, discrete representation of the steel reinforcing bars is considered advantageous over smeared representation because of the more realistic modelling of their bond-slip behaviour. However, there is up to now limited research on how to simulate the dowel action of discrete reinforcing bars, which is an important component of shear transfer in cracked concrete structures. Herein, a numerical model for the dowel action of discrete reinforcing bars is developed. It features derivation of the dowel stiffness based on the beam-on-elastic-foundation theory and direct assemblage of the dowel stiffness matrix into the stiffness matrices of adjoining concrete elements. The dowel action model is incorporated in a nonlinear finite element program based on secant stiffness formulation and application to deep beams tested by others demonstrates that the incorporation of dowel action can improve the accuracy of the finite element analysis.

콘크리트의 변형률 국소화 및 진행성 파괴에 관한 연구 (Study on Strain Localization and Progressive Failure of Concrete)

  • 송하원;김형운;우승민
    • 콘크리트학회논문집
    • /
    • 제11권3호
    • /
    • pp.181-192
    • /
    • 1999
  • The progressive failure following strain localization in concrete can be analyzed effectively using finite element modeling of fracture process zone of concrete with a finite element embedded discontinuity. In this study, a finite element with embedded discontinuous line is utilized for the analysis of progressive failure in concrete. The finite element with embedded discontinuity is a kind of discrete crack element, but the difficulties in discrete crack approach such as remeshing or adding new nodes along with crack growth can be avoided. Using a discontinuous shape function for this element, the displacement discontinuity is embedded within an element and its constitutive equation is modeled from the modeling of fracture process zone. The element stiffness matrix is derived and its dual mapping technique for numerical integration is employed. Then, a finite element analysis program with employed algorithms is developed and failure analysis results using developed finite element program are verified through the comparison with experimental data and other analysis results.

Multiscale analysis using a coupled discrete/finite element model

  • Rojek, Jerzy;Onate, Eugenio
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.1-31
    • /
    • 2008
  • The present paper presents multiscale modelling via coupling of the discrete and finite element methods. Theoretical formulation of the discrete element method using spherical or cylindrical particles has been briefly reviewed. Basic equations of the finite element method using the explicit time integration have been given. The micr-macro transition for the discrete element method has been discussed. Theoretical formulations for macroscopic stress and strain tensors have been given. Determination of macroscopic constitutive properties using dimensionless micro-macro relationships has been proposed. The formulation of the multiscale DEM/FEM model employing the DEM and FEM in different subdomains of the same body has been presented. The coupling allows the use of partially overlapping DEM and FEM subdomains. The overlap zone in the two coupling algorithms is introduced in order to provide a smooth transition from one discretization method to the other. Coupling between the DEM and FEM subdomains is provided by additional kinematic constraints imposed by means of either the Lagrange multipliers or penalty function method. The coupled DEM/FEM formulation has been implemented in the authors' own numerical program. Good performance of the numerical algorithms has been demonstrated in a number of examples.

유한요소-전달강성계수법에 의한 이산계 곡선보의 자유진동해석 (Free Vibration Analysis of Curved Beams Regarded as Discrete System Using Finite Element-Transfer Stiffness Coefficient Method)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제21권1호
    • /
    • pp.37-42
    • /
    • 2017
  • A curved beam is one of the basic and important structural elements in structural design. In this paper, the authors formulated the computational algorithm for analyzing the free vibration of curved beams using the finite element-transfer stiffness coefficient method. The concept of the finite element-transfer stiffness coefficient method is the combination of the modeling technique of the finite element method and the transfer technique of the transfer stiffness coefficient method. And, we confirm the effectiveness the finite element-transfer stiffness coefficient method from the free vibration analysis of two numerical models which are a semicircle beam and a quarter circle beam.

ERROR ANALYSIS OF FINITE ELEMENT APPROXIMATION OF A STEFAN PROBLEM WITH NONLINEAR FREE BOUNDARY CONDITION

  • Lee H.Y.
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.223-235
    • /
    • 2006
  • By applying the Landau-type transformation, we transform a Stefan problem with nonlinear free boundary condition into a system consisting of a parabolic equation and the ordinary differential equations. Fully discrete finite element method is developed to approximate the solution of a system of a parabolic equation and the ordinary differential equations. We derive optimal orders of convergence of fully discrete approximations in $L_2,\;H^1$ and $H^2$ normed spaces.

Parameter Investigation for Powder Compaction using Discrete-Finite Element Analysis

  • Choi, Jinnil
    • 한국분말재료학회지
    • /
    • 제22권5호
    • /
    • pp.337-343
    • /
    • 2015
  • Powder compaction is a continually and rapidly evolving technology where it is a highly developed method of manufacturing reliable components. To understand existing mechanisms for compaction, parameter investigation is required. Experimental investigations on powder compaction process, followed by numerical modeling of compaction are presented in this paper. The experimental work explores compression characteristics of soft and hard ductile powder materials. In order to account for deformation, fracture and movement of the particles, a discrete-finite element analysis model is defined to reflect the experimental data and to enable investigations on mechanisms present at the particle level. Effects of important simulation factors and process parameters, such as particle count, time step, particle discretization, and particle size on the powder compaction procedure have been explored.

순환대칭으로 다중연결된 구조물의 유한요소 진동해석 (Finite Element Vibration Analysis of Multiply Interconnected Structure with Cyclic Symmetry)

  • 김창부;안종섭;심수섭
    • 소음진동
    • /
    • 제7권4호
    • /
    • pp.637-644
    • /
    • 1997
  • In this paper, a method of finite element analysis is presented for efficient calculation of vibration characteristics of not only simply interconnected structure with cyclic symmetry but also multiply interconnected structure with cyclic symmetry by using discrete Fourier trandform by means of a computer with small memory in a short time. Simply interconnected structure means it is composed of substructures which are adjacent themselves in circumferential direction. First, a mathematical model of multiply interconnected structure with cyclic symmetry is defined. The multiply interconnected structure is partitioned into substructures with the same goemetric configuration and constraint eqauations to be satisfied on connecting boundaries are defined. Nodal displacements and forces are transformed into complex forms through discrete Fourier transform and then finite element analysis is performed for just only a representative substructure. In free vibration analysis, natural frequencies of a whole structure can be obtained through a series of calculation for a substructure along the number of nodal diameter. And in forced vibration analysis, forced response of whole structure can be achieved by using inverse discrete Fourier transform of results which come from analysis for a substructure.

  • PDF

내부 불연속 요소를 사용한 콘크리트의 파괴진행해석 (Analysis of Progressive Fracture in Concrete using Finite Elements with Embedded Discontinuous Line)

  • 송하원;우승민;김형운
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.450-455
    • /
    • 1998
  • In this paper, finite element with embedded discontinuous line is introduced in order to avoid the difficulties of adding new nodal points along with crack growth in discrete crack model. With the discontinuous element using discontinuous shape function, stiffness matrix of finite element is derived and dual mapping technique for numerical integration is employed. Using the finite element program made with employed algorithms, algorithm is verified and fracture analysis of simple concrete beam is performed.

  • PDF

대형 노후 구조물의 최적 기계식 해체 공정을 위한 3D FDEM 기반 정적-동적 손상 순차 해석 기법 개발 (Development of a 3D FDEM-Based Static-Dynamic Sequential Damage Analysis Method for Optimal Mechanical Demolition Processes for Large-Scale Aging Structures)

  • 김경규;신찬휘;민경조;;장경필;송태협;조상호
    • 화약ㆍ발파
    • /
    • 제42권3호
    • /
    • pp.9-22
    • /
    • 2024
  • 1980년대 급격한 도시화와 경제성장으로 인해 건설된 철근 콘크리트 구조물들이 노후화됨에 따라 해체 수요가 증가하고 있다. 특히 산업구조물과 같은 대규모 건축물에서는 기계식 해체공법과 발파 해체공법이 혼합된 방식이 활용되고 있다. 해체 수요의 증가에 따라 안전사고도 증가하고 있으며, 구조물 해체 시 안전성 확보가 필요한 실정이다. 본 연구에서는 드론과 LiDAR를 이용하여 실제 구조 정보를 획득하고, 이를 바탕으로 해석 모델을 구축하였다. 해석기법은 유한요소해석법(Finite Element Method, FEM)과 이산요소해석법(Discrete Element Method, DEM)을 결합한 Combined Finite-Discrete Element Method(FDEM) 해석기법을 사용하여, 해체 단계별 동적 구조 해석을 수행하였다. 이 결과를 ELS 상용 소프트웨어와 비교⋅분석하여 적용 가능성을 검토하였다.

불연속 요소를 사용한 콘크리트 파괴진행의 유한요소 모델링 (Modeling of Progressive Failure in Concrete using Discontinuous Finite Elements)

  • 심별;송하원;변근주
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1996년도 봄 학술발표회 논문집
    • /
    • pp.247-252
    • /
    • 1996
  • In the concrete structures, cracks occur in various causes and the cracks seriously affect the functions of structures. The analysis techniques of progressive crack in the concrete have been improved with the advance of numerical techniques. The discrete crack model used in finite element program for the analysis of progressive failure is very effective, but it can not be easily implemented into numerical procedures because of difficult handing of nodal points in finite element meshes for crack growth. This paper introduces one of the techniques which skips the difficulty. In this paper, the modeling of progressive failure using finite element formulation is explained for the analysis of concrete fracture. The discontinuous element using the discontinuous shape function and the dual mapping technique in the numerical integration are implemented into finite element code for this purpose. It is shown that developed finite element program can predict the quasi-brittle behavior of concrete including ultimate load. The comparisons of the analysis results with other data are also shown.

  • PDF