• Title/Summary/Keyword: Discrete-Element-Method

Search Result 508, Processing Time 0.031 seconds

Prediction of initiation time of corrosion in RC using meshless methods

  • Yao, Ling;Zhang, Lingling;Zhang, Ling;Li, Xiaolu
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.669-682
    • /
    • 2015
  • Degradation of reinforced concrete (RC) structures due to chloride penetration followed by reinforcement corrosion has been a serious problem in civil engineering for many years. The numerical simulation methods at present are mainly finite element method (FEM) and finite difference method (FDM), which are based on mesh. Mesh generation in engineering takes a long time. In the present article, the numerical solution of chloride transport in concrete is analyzed using radial point interpolation method (RPIM) and element-free Galerkin (EFG). They are all meshless methods. RPIM utilizes radial polynomial basis, whereas EFG uses the moving least-square approximation. A Galerkin weak form on global is used to attain the discrete equation, and four different numerical examples are presented. MQ function and appropriate parameters have been proposed in RPIM. Numerical simulation results are compared with those obtained from the finite element method (FEM) and analytical solutions. Two case of chloride transport in full saturated and unsaturated concrete are analyzed to test the practical applicability and performance of the RPIM and EFG. A good agreement is obtained among RPIM, EFG, and the experimental data. It indicates that RPIM and EFG are reliable meshless methods for prediction of chloride concentration in concrete structures.

3D Automatic Mesh Generation Scheme for the Boundary Element Method (경계요소법을 위한 3차원 자동요소분할)

  • Lee, H.B.;Lee, S.H.;Kim, H.S.;Lee, K.S.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.935-937
    • /
    • 1993
  • This paper presents a three dimensional automatic mesh generation scheme for the boundary element method, and this scheme can be applicable to practical problems of complex shape. The geometry of the problem is expressed as an assemblage of linear Coon's surfaces, and each surface is made up of four edge curves which are defined in the form of a parametric function. Curves are automatically segmented according to their characteristics. With these segments of curves, interior points and triangular mesh elements are generated in the parametric plane using Lindholm's method, and then their projection on the real surface forms the initial mesh. The refinement of initial mesh is performed so that the discrete triangular planes are close to the real continuous surfaces. The bisection method is used for the refinement. Finally, interior points in the refined mesh are rearranged so as to make each element be close with an equilateral triangle. An attempt has been made to apply the proposed method to a DY(Deflection Yoke) model.

  • PDF

Ray Effect Analysis Using the Discrete Elements Method in X-Y Geometry (2차원 직각좌표계에서 DEM을 이용한 ray effect의 해석)

  • Choi, Ho-Sin;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.1
    • /
    • pp.43-56
    • /
    • 1992
  • As one of the methods to ameliorate the ray effects which are the nature of anomalous computational effects due to the discretization of the angular variable in discrete ordinates approximations, a computational program, named TWODET (TWO dimensional Discrete Element Transport), has developed in 2 dimensional cartesian coordinates system using the discrete elements method, in which the discrete angle quadratures are steered by the spatially dependent angular fluxes. The results of the TWODET calculation with K-2, L-3 discrete angular quadratures, in the problem of a centrally located, isotropically emitting flat source in an absorbing square, are shown to be more accurate than that of the DOT 4.3 calculation with S-10 full symmetry angular quadratures, in remedy of the ray effect at the edge flux distributions of the square. But the computing time of the TWODET is about 4 times more than that of the DOT 4.3. In the problem of vacuum boundaries just outside of the source region in an absorbing square, the results of the TWODET calculation are shown severely anomalous ray effects, due to the sudden discontinuity between the source and the vacuum, like as the results of the DOT 4.3 calculation. In the probelm of an external source in an absorbing square in which a highly absorbing medium is added, the results of the TWODET calculation with K-3, L-4 show a good ones like as, somewhat more than, that of the DOT 4.3 calculation with S-10.

  • PDF

Assessment of seismic behavior stone bridge using a finite element method and discrete element method

  • Naderi, Melika;Zekavati, Mehdi
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.297-303
    • /
    • 2018
  • Seismic behavior of Osmanli and Senyuva stone bridges was addressed in this study. A combination of FEM and DEM was employed for getting closer to the real behavior of the bridge. One of the unique features of this combinational method is simulation close to reality. Modal numerical analysis was also used to verify the modeling. At the end of earthquake, a part of two lateral walls of Osmanli bridge was broken. The growth of arch cracks also increased during the earthquake. A part of right-hand wall of Senyuva Bridge was destructed during the earthquake. The left-hand side of the bridge wall was damaged during the earthquake but was not destructed.

A Study on Modeling for the Magnetic Bearing System by Numerical Analysis (수치 해석을 통한 자기 베어링 시스템의 모델링에 관한 연구)

  • Shim, S.H.;Choi, M.S.;Kim, C.H.;Moon, D.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.53-60
    • /
    • 2001
  • This paper considers a modeling for the MIMO magnetic bearing system. The rotor is flexible and has a complex shape. To obtain the nominal plant transfer functions, we perform a numerical analysis by using the finite element method(F.E.M.) for the rotor's dynamics, and make a nominal model by reducing the modes from the results. And, we have experimented on the frequency response by a closed-loop identification method, and compared it with the simulation's result on the closed-loop control system.

  • PDF

Preliminary study on a spoke-type EPB shield TBM by discrete element method (개별요소법을 활용한 스포크 타입 토압식 쉴드TBM의 예비 해석 연구)

  • Lee, Chulho;Chang, Soo-Ho;Choi, Soon-Wook;Park, Byungkwan;Kang, Tae-Ho;Sim, Jung Kil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.1029-1044
    • /
    • 2017
  • The Discrete Element Method (DEM) is one of the useful numerical methods to analyze the behavior of the ground formation by computing the motion and interaction using particles. The DEM has not been applied in civil engineering but also a wide range of industrial fields, such as chemical engineering, pharmacy, material science, food engineering, etc. In this study, to review a performance of the spoke-type earth pressure balance (EPB) shield TBM (Tunnel Boring Machine), the commercial software based on the DEM technology was used. An analysis of the TBM during excavation was conducted according to two pre-defined excavation conditions with the different rotation speed of a cutterhead. During the analysis, the resistant torque at the face of the cutterhead, the compressive force at the cutterhead and shield surface, the muck discharge at the screw auger were measured and compared. Upon the two kinds of excavation conditions, the applicability of the DEM analysis was reviewed as a modelling method for the TBM.

A new suggestion for determining 2D porosities in DEM studies

  • Wang, Zhijie;Ruiken, Axel;Jacobs, Felix;Ziegler, Martin
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.665-678
    • /
    • 2014
  • In discrete element modeling, 2D software has been widely used in order to gain further insights into the fundamental mechanisms with less computational time. The porosities used in 2D DEM studies should be determined with appropriate approaches based on 3D laboratory porosities. This paper summarizes the main approaches for converting porosities from 3D to 2D for DEM studies and theoretical evaluations show that none of the current approaches can be widely used in dealing with soil mechanical problems. Therefore, a parabolic equation and a criterion have been suggested for the determination of 2D porosities in this paper. Moreover, a case study has been used to validate that the 2D porosity obtained from the above suggestion to be rational with both the realistic contact force distribution in the specimen and the good agreement of the DEM simulation results of direct shear tests with the corresponding experimental data. Therefore, the parabolic equation and the criterion are suggested for the determination of 2D porosities in a wide range of polydisperse particle systems, especially in dealing with soil mechanical problems.

Earthquake behavior of M1 minaret of historical Sultan Ahmed Mosque (Blue Mosque)

  • Kocaturk, Turgut;Erdogan, Yildirim Serhat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.539-558
    • /
    • 2016
  • Minarets are almost the inevitable part of Mosques in Islam and according to some, from a philosophical point of view, today they symbolize the spiritual elevation of man towards God. Due to slenderness, minarets are susceptible to earthquakes and wind loads. They are mostly built in a masonry style by using cut limestone blocks or occasionally by using bricks. In this study, one minaret (M1 Minaret) of one of the charmest mosques of Turkey, Sultan Ahmed Mosque, popularly known as Blue Mosque, built between 1609 and 1616 on the order of Sultan Ahmed by the architect Mehmet Agha is investigated under some registered earthquake loads. According to historical records, a great earthquake hit Istanbul and/or its close proximity approximately every 250 years. Ottomans tackled with the problem of building earthquake resistant, slender minarets by starting to use forged iron connectors with lead as a filler to fix them to the upper and lower and to adjacent stones instead of using traditional mortar only. Thus, the discrete stones are able to transfer tensile forces in some sense. This study investigates the contribution of lead to the energy absorption capacity of the minaret under extensive earthquakes occurred in the region. By using the software ANSYS/LS-DYNA in modelling and investigating the minaret nonlinearly, it is found out that under very big recorded earthquakes, the connectors of vertical cast iron-lead mechanism play very important role and help to keep the structure safe.

Dynamic Behavior Characteristics According to Arch Types of Arched Stone Bridge Subjected to Seismic Load (지진 하중을 받는 홍예교의 아치 형태에 따른 동적 거동 특성)

  • Kim, Ho-Soo;Lee, Seung-Hee;Jeon, Gun-Woo;Bang, Hyeok-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.45-55
    • /
    • 2018
  • The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.

Assessment of computational performance for a vector parallel implementation: 3D probabilistic model discrete cracking in concrete

  • Paz, Carmen N.M.;Alves, Jose L.D.;Ebecken, Nelson F.F.
    • Computers and Concrete
    • /
    • v.2 no.5
    • /
    • pp.345-366
    • /
    • 2005
  • This work presents an assessment of the computational performance of a vector-parallel implementation of probabilistic model for concrete cracking in 3D. This paper shows the continuing efforts towards code optimization as reported in earlier works Paz, et al. (2002a,b and 2003). The probabilistic crack approach is based on the direct Monte Carlo method. Cracking is accounted by means of 3D interface elements. This approach considers that all nonlinearities are restricted to interface elements modeling cracks. The heterogeneity governs the overall cracking behavior and related size effects on concrete fracture. Computational kernels in the implementation are the inexact Newton iterative driver to solve the non-linear problem and a preconditioned conjugate gradient (PCG) driver to solve linearized equations, using an element by element (EBE) strategy to compute matrix-vector products. In particular the paper analyzes code behavior using OpenMP directives in parallel vector processors (PVP), such as the CRAY SV1 and CRAY T94. The impact of the memory architecture on code performance, and also some strategies devised to circumvent this issue are addressed by numerical experiment.