• Title/Summary/Keyword: Discrete model

Search Result 2,029, Processing Time 0.035 seconds

Field Service Engineer Replenishment Policy Assessment Using a Discrete-Event and Agent-Based Simulation Model : A Case Study (Discrete-event와 Agent 기반의 시뮬레이션을 이용한 현장 서비스 요원 보급 정책 평가 사례 연구)

  • Suh, Eun Suk
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.6
    • /
    • pp.588-598
    • /
    • 2015
  • In this paper, a simulation model for assessing the impact of alternative field service engineer replenishment policies is introduced. The end-to-end supply chain simulation model is created using a discrete-event and agent-based simulation model, which enables accurate description of key individual entities in the investigated supply chain, such as field service engineers. Once the model is validated with the historical data, it is used to assess the impacts of field service engineer replenishment policies for a major printing equipment manufacturing firm.In the case study, newly proposed replenishment policies for post-sale distribution supply chain are assessed for the level of service improvement to end customers.

Simulation Environment of DEVS Models using MATLAB/Simulink (MATLAB/Simulink를 이용한 DEVS 모델의 시뮬레이션 환경 구축)

  • Seo, Kyung-Min;Sung, Chang-Ho;Kim, Tag-Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.17 no.4
    • /
    • pp.219-227
    • /
    • 2008
  • The DEVS (Discrete Event Systems Specification) formalism supports specification of discrete event models in a hierarchical modular manner. MATLAB/Simulink is widely used for modeling, simulating and analyzing continuous and discrete time systems. This paper proposes a realization of the DEVS formalism in MATLAB/ Simulink. The proposed design enables to use a great amount of mathematical packages and functions included in MATLAB /Simulink. The design is also employed as real time simulation and hybrid system simulation which is a mixture of continuous systems and discrete event systems. The paper introduces Simulink-DEVS model, in which a simulation algorithm is embedded. The model consists of a Simulink-atomic model and a Simulink-coupled model. In addition, the time advance algorithm to simulate the model is suggested. The algorithm handles the time synchronization and the accommodation of different concepts specific to continuous and discrete event models. Two experimental results are presented for a pure discrete event model and a hybrid model.

  • PDF

A Discrete Model of Brucellosis Happened in Korean Livestock Farms

  • Park, Junpyo;Kim, Byul Nim
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.601-608
    • /
    • 2007
  • In this paper we introduce a discrete model of brucellosis happened in Korean livestock farms and numerically analyze its dynamical features. To do it, we consider parameters data supported by Livestock Cooperatives. To control brucellosis, we investigate the relationship among key parameters, as applications of our model. We hope that our model may be used to reduce brucellosis in Korean livestock farms.

  • PDF

MODELING THE HYDRAULIC CHARACTERISTICS OF A FRACTURED ROCK MASS WITH CORRELATED FRACTURE LENGTH AND APERTURE: APPLICATION IN THE UNDERGROUND RESEARCH TUNNEL AT KAERI

  • Bang, Sang-Hyuk;Jeon, Seok-Won;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.6
    • /
    • pp.639-652
    • /
    • 2012
  • A three-dimensional discrete fracture network model was developed in order to simulate the hydraulic characteristics of a granitic rock mass at Korea Atomic Energy Research Institute (KAERI) Underground Research Tunnel (KURT). The model used a three-dimensional discrete fracture network (DFN), assuming a correlation between the length and aperture of the fractures, and a trapezoid flow path in the fractures. These assumptions that previous studies have not considered could make the developed model more practical and reasonable. The geologic and hydraulic data of the fractures were obtained in the rock mass at the KURT. Then, these data were applied to the developed fracture discrete network model. The model was applied in estimating the representative elementary volume (REV), the equivalent hydraulic conductivity tensors, and the amount of groundwater inflow into the tunnel. The developed discrete fracture network model can determine the REV size for the rock mass with respect to the hydraulic behavior and estimate the groundwater flow into the tunnel at the KURT. Therefore, the assumptions that the fracture length is correlated to the fracture aperture and the flow in a fracture occurs in a trapezoid shape appear to be effective in the DFN analysis used to estimate the hydraulic behavior of the fractured rock mass.

A Study on the Establishment of Reliability Growth Planning for One-shot System (원샷시스템의 신뢰도 성장 계획 설정 방안)

  • Seo, Yang Woo;Jeon, Dong Ju;Kim, So Jung;Kim, Yong Geun
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • In this paper we proposed to develop the reliability growth planning for the One-shot system using the PM2-Discrete model. The PM2-Discrete is the methodology specifically developed for discrete systems and is the first quantitative method available for formulating detailed plans in the discrete usage domain. First, the parameters RG, RI, T, MS and d of the PM2-Discrete model are set. Second, the case analysis was performed on One-shot system A. Third, the input parameter values were applied to drive the R(t) equation. Finally, using RGA 11 Software, the reliability Growth Planning Curve of One-shot system A was constructed. Also, the sensitivity analyses are performed for the changes of model parameters. The results of this study can be usefully used in establishing the reliability growth planning curve of the One-shot system.

Modeling and Control of Intersection Network using Real-Time Fuzzy Temporal Logic Framework (실시간 퍼지 시간논리구조를 이용한 교차로 네트워크의 모델링과 제어)

  • Kim, Jung-Chul;Lee, Won-Hyok;Kim, Jin-Kwon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.352-357
    • /
    • 2007
  • This paper deals with modeling method and application of Fuzzy Discrete Event System(FDES). FDES have characteristics which Crisp Discrete Event System(CDES) can't deals with and is constituted with the events that is determined by vague and uncertain judgement like biomedical or traffic control. We proposed Real-time Fuzzy Temporal Logic Framework(RFTLF) to model Fuzzy Discrete Event System. It combines Temporal Logic Framework with Fuzzy Theory. We represented the model of traffic signal systems for intersection to have the property of Fuzzy Discrete Event System with Real-time Fuzzy Temporal Logic Framework and designed a traffic signal controller for smooth traffic flow. Moreover, we proposed the method to find the minimum-time route to reach the desired destination with information obtained in each intersection. In order to evaluate the performance of Real-time Fuzzy Temporal Logic Framework model proposed in this paper, we simulated unit-time extension traffic signal controller model of the latest signal control method on the same condition.

Identification and Control for Nonlinear Discrete Time Systems Using an Interconnected Neural Network

  • Yamamoto, Yoshihiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.994-998
    • /
    • 2005
  • A new control method, called a simple model matching, has been recently developed by the author. This is very simple and be applied for linear and nonlinear discrete time systems with/without time lag. Based on this formulation, identification is examined in this paper using an interconnected neural network with the EBP-EWLS learning algorithm. With this result, a control method is also presented for a nonlinear discrete time system.

  • PDF

A discrete particle model for reinforced concrete fracture analysis

  • Azevedo, N. Monteiro;Lemos, J.V.;Almeida, J.R.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.343-361
    • /
    • 2010
  • The Discrete Element Method adopting particles for the domain discretization has recently been adopted in fracture studies of non-homogeneous continuous media such as concrete and rock. A model is proposed in which the reinforcement is modelled by 1D rigid-spring discrete elements. The rigid bars interact with the rigid circular particles that simulate the concrete through contact interfaces. The DEM enhanced model with reinforcement capabilities is evaluated using three point bending and four point bending tests on reinforced concrete beams without stirrups. Under three point bending, the model is shown to reproduce the expected final crack pattern, the crack propagation and the load displacement diagram. Under four point bending, the model is shown to match the experimental ultimate load, the size effect and the crack propagation and localization.

A design of discrete time nonlinear control system with disturbances using model following method

  • Zhang, Yuan-Sheng;Okubo, Shigenori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.239-242
    • /
    • 1996
  • A model following control system(MFCS) can give general output signals following desired ones. In previous studies, a method of nonlinear MFCS was proposed by S.Okubo[1]. In this paper, the method of nonlinear MFCS will be extended to discrete time nonlinear systems. It is easy to extend the method to discrete time systems. But in the case .gamma.=1 discrete time systems, the proof becomes difficult, because the transfer function from f(v(k)) to v(k) can't be a positive real function. In this case, to ensure that internal states are stable, a new criterion is proposed.

  • PDF

Discrete event simulation of Maglev transport considering traffic waves

  • Cha, Moo Hyun;Mun, Duhwan
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • A magnetically levitated vehicle (Maglev) system is under commercialization as a new transportation system in Korea. The Maglev is operated by an unmanned automatic control system. Therefore, the plan of train operation should be carefully established and validated in advance. In general, when making a train operation plan, statistically predicted traffic data is used. However, a traffic wave often occurs in real train service, and demand-driven simulation technology is required to review a train operation plan and service quality considering traffic waves. We propose a method and model to simulate Maglev operation considering continuous demand changes. For this purpose, we employed a discrete event model that is suitable for modeling the behavior of railway passenger transportation. We modeled the system hierarchically using discrete event system specification (DEVS) formalism. In addition, through implementation and an experiment using the DEVSim++ simulation environment, we tested the feasibility of the proposed model. Our experimental results also verified that our demand-driven simulation technology can be used for a priori review of train operation plans and strategies.