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Abstract: A new control method, called a simple model matching, has been recently developed by the author. This is very simple and 
be applied for linear and nonlinear discrete time systems with/without time lag. Based on this formulation, identification is examined 
in this paper using an interconnected neural network with the EBP-EWLS learning algorithm. With this result, a control method is 
also presented for a nonlinear discrete time system. 
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1. INTRODUCTION 
 

This paper presents, in the first part, an identification method 
using an interconnected neural network (INN) with the 
EBP-EWLS learning algorithm [1] for nonlinear systems. A 
system considered here is a nonlinear discrete time system with 
a linear term of a current input variable. In this formulation, it 
is possible to estimate a coefficient of a linear input term 
separately with other terms. The estimate of this coefficient can 
be seen as an equivalent constant value over the interval on 
which the input is applied.  

In the latter half of this paper, it is discussed to use the 
identification result for control. Control methodology is the 
simple model matching (SMM) which is recently developed by 
the author [2]. Only using an identification result obtained by a 
neural network, it becomes an open loop control and the output 
response may not be tolerable. But, this defect can be recovered 
by introducing an integral action. This result is compared with 
the one used for an adaptive control [3]. 

There are many papers and books about nonlinear systems 
for identification, control, and adaptive control. It is the 
features of this paper that the SMM and the INN are used. 
 

2. IDENTIFICATION 
 
2.1 Nonlinear discrete time system 

Consider a scalar nonlinear system in general form 
 

)...,,...,,,( 111 −−+ = kkkkk uuyygy .                (1) 
 
If the nonlinear function ).(g  is differentiable with respect 

to the variable
ku , it can be linearized as follows. 

 
),(11 uyfury kkk +=+

                        (2-1) 

)...,,....,,,(),( 11 −−≡ kkkkk uuyyfuyf .        (2-2) 
 
If the linearization is performed mathematically, the value

1r  is 
uniquely determined. But, if the system model is obtained by 
modeling, or identification in a form 
 

),(ˆˆˆ 11 uyfury kkk +=+
,                       (3-1) 

)...,,....,,,(ˆ),(ˆ
11 −−≡ kkkkk uuyyfuyf ,        (3-2) 

 
Then the term 

kur1̂
does not necessarily mean the linear term 

of the right hand side of eq. (3-1). It is the main concern of this 
paper that what can be obtained by identification for a system 
model of the form eq. (3-1). An identification method is 
proposed for this model by using an interconnected neural 
network (INN). Using INN makes it possible to identify the 
first and second terms in the right hand side of eq. (3-1) 

separately. In what follows, the configuration of the INN used 
here, the EBP-EWLS learning algorithm developed by the 
author and some simulation studies are explained. The reason 
why the form of eq. (3-1) is necessary becomes clear in the 
section 3 where the simple model matching control is 
performed using the identification result. 
 
2.2 Interconnected neural network 
  An INN is described by the following equations. 
 

kOIk
T
OHkOOk uwywy ++=+ zwˆˆ 1

               (4-1) 

)( 11 ++ = kk h xz                                 (4-2) 

kHIk
T

HHkHOk uwWy ++=+ zwx ˆ1
               (4-3) 

 
This is a scalar neural network with input 

ku and output 
1ˆ +ky . 

All variables have appropriate dimensions. Bias elements are 
omitted here for simplicity. If the INN (6) is supposed to be a 
system model of the system (2), the coefficient 

OIw which 

combines the input variable 
ku  to the output variable 

1ˆ +ky  

directly should be recognized as the estimate of 
1r  and have a 

same role of 
1̂r  in eq. (3). Here, the indices of eqs. (4-2) and 

(4-3) are shifted as follows, 
 

)( kk h xz =                                    (4-4) 

111ˆ −−− ++= kHIk
T

HHkHOk uwWy zwx .            (4-5) 
 
Then, the INN is equivalently represented by 
 

k
T
Oky vw=+1ˆ ,                                 (5-1) 

   ),,( OI
T
OHOO

T
O www=w , ),,ˆ( k

T
kk

T
k uy zv =  

)( kk h xz = ,                                   (5-2) 

1−= k
T
Hk vWx ,                                 (5-3) 

   ),,( T
HI

T
HH

T
HO

T
H wWwW =  

 
This can be regarded as a three-layered NN. The EBP-EWLS 
learning algorithm can be used for learning a nonlinear system 
(2) with 

1+ky  as a target signal. This algorithm is explained 
next. 
 
2.3 Learning algorithm 
  The algorithm is composed of two steps. The first step is the 
determination of a fictitious target signals for each output of 
hidden units. This is done by an error back propagation (EBP) 
method, which is different from the well known BP method. 
The following are derived to make the output error zero by the 
variation 

kv∆  of 
kz . 
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)ˆ()( 11
1

++
− −=∆ kkO

T
OOk yywwwv               (6-1) 

),,ˆ(,*
, k

T
kk

T
kkkkN uy ∆∆∆=∆∆+= zvzzz      (6-2) 

*
,, kNkN Hzz =                                  (6-3) 

 
Here the symbol H  represents the operator for a vector 

kN ,z  to be included in the range space of the function h . The 

resulting vector 
kN ,z  has a role of a temporal target function 

for the output of the hidden unit
kz . The original learning 

problem for a three-layered NN is then divided into two 
problems of two layered NNs each have a respective target 
signal. Then the second step is an update of neural network 
weight parameters and this can be solved by the exponentially 
weighted least squares (EWLS) method, where the inverse 
function of h  is used. For more details, see [1]. 
 
2.4 Identification 
  Using an interconnected neural network with the EBP- 
EWLS learning algorithm, a nonlinear system can be identified. 
Especially, as described before, the estimate of the coefficient 
of linear input term can be obtained numerically. This is 
confirmed by many simulation results. 
  In what follows, two types of test input signal are used. D1 is 
a random number uniformly distributed on the interval [-0.5, 
0.5]. D2 is the one on the interval [-0.1, 0.1]. A forgetting factor 
of the EWLS algorithm is 0.96 for every example. 
 
(Example 1) Consider a system of the form 
 

kkkkkk uKuuryyy sin2.006.05.0 1111 +−+−= −−+
 

 
In this system, the nonlinear term 

kuK sin  includes a linear 

term of the form 
kKu . It is interesting to know what value of 

1̂r  can be estimated. 
1r , Kr +1

 or other value? Fig.1 

shows the result of the case that 9.01 =r and 1.0=K , 

where the test input 
ku  is D1. It can be seen that the estimate 

1̂r  is a good approximation of Kr +1
=1. Fig.2 is the case 

for 1.01 =r and 9.0=K  with input D1. There exists an 
offset obviously because of the strong nonlinearity. This offset 
decreases if D2 is used for a test input signal which is seen in  
Fig.3. This is due to the small range of the signal D2. From 
these figures, it may be concluded that the estimate of the 
coefficient of the linear input term is an equivalent constant 
value over the interval on which the input signal is applied. 

 
   Fig.1 The case: 9.01 =r , 1.0=K  and D1 

 
       Fig.2 The case: 1.01 =r , 9.0=K  and D1 

 
      Fig.3 The case: 1.01 =r , 9.0=K  and D2 
 
(Example 2 ) Consider a system described by 

121 06.05.0
1 −+ ++
+

= kk
k

k
k yy

u
u

y  

This system has a strong nonlinearity with respect to the input 
variable and also represented by 

12

3

1 06.05.0
1 −+ ++
+

−= kk
k

k
kk yy

u
u

uy . 

Fig.4 is the result using a D1 input signal and Fig.5 is for D2. 
In the Figures 1 to 5, the number of hidden units of the INN is 
8. But, Fig.6 is the result using the same condition with Fig.5 
but the number of hidden units is 10. It is clear that the 
identification result depends on the number of hidden units. 
 

 
             Fig.4 The case 1 of example 2 
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             Fig.5 The case 2 of example 2 
 

 
              Fig.6 The case 3 of example 2 
 
  From these results, it became clear that a coefficient of a 
linear input term for a nonlinear discrete time system can be 
identified as an equivalent constant value over the interval on 
which the input is applied. If an estimate moves oscillatory like 
in Fig.4, it is considered to use the average over the last few 
data. 
 
            3.  CONTROL 
 
  In the last section, an identification method for nonlinear 
discrete time systems was presented. It is presented here to use 
the identification result discussed above for control. A simple 
model matching method (SMM) is first explained, which is 
developed by the author [2]. This method is different from the 
conventional model matching (model following) method [4] 
and is applicable for linear/nonlinear discrete time systems with 
time lag. In this configuration, an identification result is used as 
a system model with an integral action. This result is compared 
with an adaptive control where an identification scheme 
described in a last section is utilized in on line recursive form. 
 
3.1 Simple model matching method (SMM) 

Consider a system and a desired system described by 
 

),(11 uyfury kkk +=+
,                        (6-1) 

)...,....,,,(),( 11 −−≡ kkkk uyyfuyf              (6-2) 

)...,....,,,( ,1,,1, kdkdkddkd uyyfy −+ = ,             (7) 

 
respectively, where 

ky  and 
ku  are system output and input,  

 

 

 
 
                Fig.7 Output Responses 
 
and 

kdy ,
and 

kdu ,
are desired system output and input 

(reference input) respectively. Note that the current input 
variable 

ku  does not included in the right hand side of eq. 
(1-1). Then, a control input is determined as 
 

11, /}),({ ruyfyu kkdk −= +
                     (8) 

 
by replacing the output 

1+ky in (1) with 
1, +kdy . Then, the 

system output coincides with the output of the desired system 
in one step. On the other hand, the output of a conventional 
model matching method converges asymptotically to the 
desired output. This fact is demonstrated in Fig.7.   

In the real situation, eq. (1) can not be used and, instead of it, 
a system model 
 

),(ˆˆˆ 11 uyfury kkk +=+
                        (9) 

     )...,....,,,(ˆ),(ˆ
11 −−≡ kkkk uyyfuyf  

 
is utilized. Then, the control input is really executed by 
 

11, ˆ/}),(ˆ{ ruyfyu kkdk −= +
.                   (10) 

 
In this method, the value 

1̂r  is of great significance for the 
stability of control input. Especially, there is a stability problem 
for a non-minimum phase system. This problem is partly 
resolved in [4]. 
 
3.1.1 Integral action 
  There exists an offset if the control signal (10) is used since a 
system and a system model are, in general, different. To erase 
an offset, introduction of an integral action is useful. Doing this 
in the SMM, it is enough to add an output error of the system 
and the system model as follows 
 

11, ˆ/}ˆ),(ˆ{ ryyuyfyu kkkkdk +−−= +
.          (11) 

 
It is not hard to see that the closed loop system with input (11) 
has an integral action. For example, it can be seen that the 
steady state of the system output coincides with that of the 
desired output for a step response under the assumption that the 
step response is stable. 
 
3.1.2 Systems with time lag 
  For a system and a system model with time lag described by 
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),;( 112 uyyfury kkkk ++ +=                  (12-1) 

)...,...,,,(),;( 111 −++ ≡ kkkkk uyyfuyyf ,      (12-2) 
 
control input is determined as 
 

111, ˆ/}),;(ˆ{ ruyyfyu kkkdk ++ −=  

11111, ˆ/}),;ˆˆ(ˆ{ ruyfurfy kkkkd −−+ +−=       (13) 

 
The same manner can be similarly extended for a system with 
time lag of multi steps. Integral action can also be introduced. 
 
3.2 Control by using the identification results 
  For a system (6), the coefficient of the linear term can be 
identified numerically as explained in the last section. Then, a 
nonlinear term is seemed to be obtained as 
 

kkk uryuyf 11 ˆˆ),(ˆ −= +
.                         (14) 

 
But, this is only possible after the control signal is determined. 
Therefore, the approximation 
 

111 ˆˆ),(ˆ
−− −= kkk uryuyf                         (15) 

 
is used in a control input. The following examples confirm the 
validity of this method. 
 
(Example 3) Consider the following system and the desired 
system. 
 

kkk

kkk

uuu
yyy

sin29.03.08.0
06.05.0

1

11

+−+
−=

−

−+  

1,,1,1, 03.005.048.04.1 −−+ ++−= kdkdkdkkd uuyyy  

 
Fig.8 and Fig.9 are a step and a ramp responses respectively, 
and both show a fairy large offset because there is an 
approximation and the identification error in eq. (15) and, eq. 
(15) should be expressed exactly as 
 

1111 ˆˆ),ˆ(ˆ),(ˆ
−−− −== kkkk uryuyfuyf .           (16) 

 
This means that there is no output feedback and the control 
signal (10) is used as an open loop control. This is more 
important and critical defect when an identification result by 
the neural network is utilized. 
 

 
 
           Fig.8 Step response  
 

 
 
           Fig.9 Ramp response 
 
This defect can be recovered if an integral action is used. 
Fig.10 and Fig.11 are the results using an integral action 
corresponding to Fig.8 and Fig.9, respectively. 
 

 
 
        Fig.10 Step response with integral action 
 
 

 
 
        Fig.11 Ramp response with integral action 
 
Similar results are obtained for a system with time lag in 
example 4. 
(Example 4) 
 

kkk

kkk

uuu
yyy

sin29.03.00.0
06.05.0

1

11

+++
−=

−

−+  

1,,1,1, 08.00.048.04.1 −−+ ++−= kdkdkdkkd uuyyy  

 
Figs.12 and 13 are results without integral action and Figs.14 
and 15 are with integral action. Similar results are obtained for 
a system with time lag. 
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              Fig.12 Step response 
 

 
 
            Fig.13 Ramp response 
 

 
       Fig.14 Step response with integral action 

 

 

       Fig.15 Ramp response with integral action 

 

 
      Fig.16 Step response vs adaptive control 

 
       Fig.17 Ramp response vs adaptive control 
 

Figs.16 and 17 are results compared with an adaptive control 
where the identification is recursively performed in each step. 
It is seen that the combination of Identification and control is 
much better than the adaptive control. 
 
              4.  CONCLUSIONS 
 
  A new scheme for identification for nonlinear discrete time 
system was proposed using an interconnected neural network 
and the EBP-EWLS learning algorithm. It was shown that the 
coefficient of the linear input variable can be obtained 
numerically. This result was applied for control, which showed 
an integral action was very powerful to recover the defect of 
the open loop control and was superior to the adaptive control.. 
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