• Title/Summary/Keyword: Discrete Wavelet

Search Result 664, Processing Time 0.043 seconds

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Design of LMS based adaptive equalizer using Discrete Multi-Wavelet Transform (Discrete Multi-Wavelet 변환을 이용한 LMS기반 적응 등화기 설계)

  • Choi, Yun-Seok;Park, Hyung-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.3
    • /
    • pp.600-607
    • /
    • 2007
  • In the next generation mobile multimedia communications, the broad band shot-burst transmissions are used to reduce end-to-end transmission delay, and to limit the time variation of wireless channels over a burst. However, training overhead is very significant for such short burst formats. So, the availability of the short training sequence and the fast converging adaptive algorithm is essential in the system adopting the symbol-by-symbol adaptive equalizer. In this paper, we propose an adaptive equalizer using the DWMT (discrete multi-wavelet transform) and LMS (least mean square) adaptation. The proposed equalizer has a faster convergence rate than that of the existing transform-domain equalizers, while the increase of computational complexity is very small.

Summarized IDA curves by the wavelet transform and bees optimization algorithm

  • Shahryari, Homayoon;Karami, M. Reza;Chiniforush, Alireza A.
    • Earthquakes and Structures
    • /
    • v.16 no.2
    • /
    • pp.165-175
    • /
    • 2019
  • Incremental dynamic analysis (IDA), as an accurate method to evaluate the parameters of structural performance levels, requires many non-linear time history analyses, using a set of ground motion records which are scaled to different intensity levels. Therefore, this method is very computationally demanding. In this study, a new method is presented to estimate the summarized (16%, 50%, and 84% fractiles) IDA curves of a first-mode dominated structure using discrete wavelet transform and bees optimization algorithm. This method reduces the number of required ground motion records for the prediction of the summarized IDA curves. At first, a subset of first list ground motion records is decomposed by means of discrete wavelet transform which have a low dispersion estimating the summarized IDA curves of equivalent SDOF system of the main structure. Then, the bees algorithm optimizes a series of factors for each level of detail coefficients in discrete wavelet transform. The applied factors change the frequency content of original ground motion records which the generated ground motions records can be utilized to reliably estimate the summarized IDA curves of the main structure. At the end, to evaluate the efficiency of the proposed method, the seismic behavior of a typical 3-story special steel moment frame, subjected to a set of twenty ground motion records is compared with this method.

Frequency Estimation Technique using Recursive Discrete Wavelet Transform (반복 이산 웨이브릿 변환을 이용한 주파수 추정 기법)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.2
    • /
    • pp.76-81
    • /
    • 2011
  • Power system frequency is the main index of power quality indicating an abnormal state and disturbances of systems. The nominal frequency is deviated by sudden change in generation and load or faults. Power system is used as frequency relay to detection for off-nominal frequency operation and connecting a generator to an electrical system, and V/F relay to detection for an over-excitation condition. Under these circumstances, power system should maintain the nominal frequency. And frequency and frequency deviation should accurately measure and quickly estimate by frequency measurement device. The well-known classical method, frequency estimation technique based on the DFT, could be produce the gain error in accuracy. To meet the requirements for high accuracy, recently Wavelet transforms and analysis are receiving new attention. The Wavelet analysis is possible to calculate the time-frequency analysis which is easy to obtain frequency information of signals. However, it is difficult to apply in real-time implementation because of heavy computation burdens. Nowadays, the computational methods using the Wavelet function and transformation techniques have been searched on these fields. In this paper, we apply the Recursive Discrete Wavelet Transform (RDWT) for the frequency estimation. In order to evaluate performance of the proposed technique, the user-defined arbitrary waveforms are used.

Tunable Q-factor 2-D Discrete Wavelet Transformation Filter Design And Performance Analysis (Q인자 조절 가능 2차원 이산 웨이브렛 변환 필터의 설계와 성능분석)

  • Shin, Jonghong
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • The general wavelet transform has profitable property in non-stationary signal analysis specially. The tunable Q-factor wavelet transform is a fully-discrete wavelet transform for which the Q-factor Q and the asymptotic redundancy r, of the transform are easily and independently specified. In particular, the specified parameters Q and r can be real-valued. Therefore, by tuning Q, the oscillatory behavior of the wavelet can be chosen to match the oscillatory behavior of the signal of interest, so as to enhance the sparsity of a sparse signal representation. The TQWT is well suited to fast algorithms for sparsity-based inverse problems because it is a Parseval frame, easily invertible, and can be efficiently implemented. The transform is based on a real valued scaling factor and is implemented using a perfect reconstruction over-sampled filter bank with real-valued sampling factors. The transform is parameterized by its Q-factor and its over-sampling rate, with modest over-sampling rates being sufficient for the analysis/synthesis functions to be well localized. This paper describes filter design of 2D discrete-time wavelet transform for which the Q-factor is easily specified. With the advantage of this transform, perfect reconstruction filter design and implementation for performance improvement are focused in this paper. Hence, the 2D transform can be tuned according to the oscillatory behavior of the image signal to which it is applied. Therefore, application for performance improvement in multimedia communication field was evaluated.

A Study on Auto-Classification of Acoustic Emission Signals Using Wavelet Transform and Neural Network (웨이블렛 변환과 신경망을 이용한 음향방출신호의 자동분류에 관한연구)

  • Park, Jae-Jun;Kim, Meyoun-Soo;Oh, Seung-Heon;Kang, Tae-Rim;Kim, Sung-Hong;Beak, Kwan-Hyun;Oh, Il-Duck;Song, Young-Chul;Kwon, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.1880-1884
    • /
    • 2000
  • The discrete wavelet transform is utilized as preprocessing of Neural Network(NN) to identify aging state of internal partial discharge in transformer. The discrete traveler transform is used to produce wavelet coefficients which are used for Classification. The statistical parameters (maximum of wavelet coefficients, average value, dispersion, skewness, kurtosis) using the wavelet coefficients are input into an back-propagation neural network. The neurons whose weights have obtained through Result of Cross-Validation. The Neural Network learning stops either when the error rate achieves an appropriate minimum or when the learning time overcomes a constant value. The networks, after training, can decide if the test signal is Early Aging State or Last Aging State or normal state.

  • PDF

Analysis of 2-Dimensional Object Recognition Using discrete Wavelet Transform (이산 웨이브렛 변환을 이용한 2차원 물체 인식에 관한 연구)

  • Park, Kwang-Ho;Kim, Chang-Gu;Kee, Chang-Doo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.194-202
    • /
    • 1999
  • A method for pattern recognition based on wavelet transform is proposed in this paper. The boundary of the object to be recognized includes shape information for object of machine parts. The contour is first represented using a one-dimensional signal and normalized about translation, rotation and scale, then is used to build the wavelet transform representation of the object. Wavelets allow us to decompose a function into multi-resolution hierarchy of localized frequency bands. The recognition of 2-dimensional object based on the wavelet is described to analyze the shape of analysis technique; the discrete wavelet transform(DWT). The feature vectors obtained using wavelet analysis is classified using a multi-layer neural network. The results show that, compared with the use of fourier descriptors, recognition using wavelet is more stable and efficient representation. And particularly the performance for objects corrupted with noise is better than that of other method.

  • PDF

Application of discrete wavelet transform to prediction of ram stuck phenomena

  • Byun, Seung-Hyun;Cho, Byung-Hak;Shin, Chang-Hoon;Park, Joon-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1445-1449
    • /
    • 2005
  • The ram assembly is important equipment in fueling machine of PHWR(Pressurized Heavy Water Reactor) plant where fuel replacement is possible while the plant is in service. Troubles in the ram assembly can cause lots of difficulties in power plant operation. The ram assembly is typically composed of the B-ram, the L-Ram and the C-Ram. The B-ram is focused in this paper because it plays the most important role in the ram assembly. Among the ram fault phenomena, ram stuck phenomena are the most frequent cases in the B-ram, which has a ball screw mechanism driven by a hydraulic motor. Ram stuck phenomena are due to ball wear and damage in ball nut that increase in proportion to the number of fuel replacement. It is required to predict ram stuck phenomena before they occur. In this paper, a method is proposed for predicting ram stuck phenomena using a discrete wavelet transform. The discrete wavelet transform provides information on both the time and frequency characteristics of the input signals. The proposed method uses the frequency bandwidths of coefficients of discrete wavelet decompositions and detail coefficients of discrete wavelet transform to predict ram stuck phenomena. The signal used in this paper is a torque-related signal such as a hydraulic service outlet pressure signal in a hydraulic driving system or a current signal in a DC motor driving system. Finally, the validity of the proposed method is shown via experiment using ball nut characteristic test equipment that simulates ram stuck phenomena due to increased ball friction in ball nut.

  • PDF

Quincunx Sampling Method for Performance Improvement of 2D High-Density Wavelet Transformation (2차원 고밀도 이산 웨이브렛 변환의 성능 향상을 위한 Quincunx 표본화 기법)

  • Lim, Joong-Hee;Shin, Jong-Hong;Jee, Inn-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.179-191
    • /
    • 2013
  • The quincunx lattice is a non-separable sampling method in image processing. It treats the different directions more homogeneously and good frequency property than the separable two dimensional schemes. The high density discrete wavelet transformation is one that expands an N point signal to M transform coefficients with M > N. In two dimensions, this transform outperforms the standard discrete wavelet transformation in terms of shift-invariant. Although the transformation utilizes more wavelets, sampling rates are high costs. This paper proposed the high density discrete wavelet transform using quincunx sampling, which is a discrete wavelet transformation that combines the high density discrete transformation and non-separable processing method, each of which has its own characteristics and advantages. Proposed wavelet transformation can service good performance in image processing fields.

The Analysis of Partial Discharges Pattern using Discrete Wavelet Transform (이산 웨이브렛변환에 의한 부분방전패턴 분석)

  • 이현동;김충년;지승욱;박광서;이광식;이동인
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.183-187
    • /
    • 2000
  • This paper deals with multiresolution analysis of wavelet transform for partial discharge(PD), both corona and surface discharge. Multiresolution analysis was used for performing discrete wavelet transform. PD signals was decomposed into "approximation" and "detail" components until 4 levels by using discrete wavelet analysis. In this paper, daubechies family is adopted for the research of the characteristics of PD signals. The results show that in corona discharge the segment 7, 8, 9, 10, 11 values of defined variable is increased with discharge process, so phase distribution is characterized by 210~330 ranges. In case surface discharge in expoxy insulator inserted, defined variable values is fairly symmetric discharge pattern because coupled both corona and dielectric bounded discharges. We can confirmly discriminate the type PD source. the type PD source.

  • PDF