• 제목/요약/키워드: Discrete System

검색결과 2,483건 처리시간 0.028초

Vibration characteristic analysis of sandwich cylindrical shells with MR elastomer

  • Yeh, Jia-Yi
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.233-247
    • /
    • 2016
  • The vibration characteristic analysis of sandwich cylindrical shells subjected with magnetorheological (MR) elastomer and constraining layer are considered in this study. And, the discrete finite element method is adopted to calculate the vibration and damping characteristics of the sandwich cylindrical shell system. The effects of thickness of the MR elastomer, constraining layer, applied magnetic fields on the vibration characteristics of the sandwich shell system are also studied in this paper. Additionally, the rheological properties of the MR elastomer can be changed by applying various magnetic fields and the properties of the MR elastomer are described by complex quantities. The natural frequencies and modal loss factor of the sandwich cylindrical shells are calculated for many designed parameters. The core layer of MR elastomer is found to have significant effects on the damping behavior of the sandwich cylindrical shells.

Implementation of Thrust Ripple Reduction for a Permanent Magnet Linear Synchronous Motor Using an Adaptive Feed Forward Controller

  • Baratam, Arundhati;Karlapudy, Alice Mary;Munagala, Suryakalavathi
    • Journal of Power Electronics
    • /
    • 제14권4호
    • /
    • pp.687-694
    • /
    • 2014
  • This paper focuses on the analysis and compensation of thrust ripples in permanent magnet linear synchronous motors (PMLSM). The main drawback in PMLSMs is the presence of thrust ripples, which are mainly due to the interaction between the permanent magnets and armature slotted core. These thrust ripples reduce the performance of the drive system in high precision applications especially at low speeds. This paper analyzes thrust ripples using the discrete wavelet transform. These undesired thrust ripples are compensated by using an adaptive feed forward controller. It is observed that this novel controller reduces about 65 percent of the thrust ripples. An extensive simulation is performed through MATLAB and it is validated through experimental results using a d-SPACE system with a DS1104 control board.

비선형 이산 시간 시스템 $x_{k+1}=G_{u_k}{o}F{(x_k)}$ 의 선형화에 관하여 (On the Linearization of the Discrete-time Nonlinear Systems, $x_{k+1}=G_{u_k}{o}F{(x_k)}$)

  • 남광희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 전기.전자공학 학술대회 논문집(I)
    • /
    • pp.125-128
    • /
    • 1987
  • We investigate the feedback linearizability of nonlinear discrete-time system s of a specific form, $x_k=G_{u_k}oF(x_k)$ where F is a diffeomorphism and [$G_{u_k}$] forms an one parameter group of diffeomorphisms. This structure represents a class of systems which are state equivalent to linear ones and approximates the sampled data model of a continuous-time system. It is also considered a relationship between linearizability and discretization.

  • PDF

w-변환의 s와 w영역간의 관계에 대한 유의 성질 (Some Remarks on the s-plane to w-plane Correlations of w-transform)

  • 김려화;김영철
    • 전기학회논문지
    • /
    • 제61권1호
    • /
    • pp.117-124
    • /
    • 2012
  • In this paper, we present some remarks on the correlations between s and w domains when a discrete-time transfer function is converted from z-plane by using the w-transform. With time response specifications, when a digital filter or controller is designed in z-plane, the w-transform is useful for the purpose if only the w-transformed system closely approximates to the continuous-time system. It will be shown that the approximation is accomplished only in the specific region depending on sampling time. Also, it is noted that such an approximation should be carefully dealt with for the case where a discrete-time reference transfer function is synthesized for the use of direct digital design.

모드필터방법에 의한 간접적 입력규명 (Indirect Input Identification by Modal Filter Technique)

  • 김영렬;김광준
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.377-386
    • /
    • 1999
  • This paper is a study on model method for estimating system inputs from vibration responses, which is one of indirect input identification methods in frequency domain. The method has advantages over direct inverse method especially when points of operational inputs are inaccessible so that artificial excitation forces cannot be applied to obtain frequency response functions of the complete system. Procedures of extended modal model method are proposed and checked by numerical experiment. Mechanisms of error propagation, i.e., how errors in modal parameters such as poles nad mode shape vectors affect estimation of the input forces, are illustrated. Then, in order to counteract the error propagation, discrete modal filter approach is taken in this paper to compute the inversion of modal matrix in which the most serious errors seem to be generated. Further, a Reduced form of Modified Reciprocal Modal Vector(RMRMV) is proposed for estimating multiple inputs. It is shown to have smaller orthogonality error than MRMV.

  • PDF

COMPARISON OF DISCRETE TIME INVENTORY SYSTEMS WITH POSITIVE SERVICE TIME AND LEAD TIME

  • Balagopal, N;Deepthy, CP;Jayaprasad, PN;Varghese, Jacob
    • Korean Journal of Mathematics
    • /
    • 제29권2호
    • /
    • pp.371-386
    • /
    • 2021
  • This paper investigates two discrete time queueing inventory models with positive service time and lead time. Customers arrive according to a Bernoulli process and service time and lead time follow geometric distributions. The first model under discussion based on replenishment of order upto S policy where as the second model is based on order placement by a fixed quantity Q, where Q = S - s, whenever the inventory level falls to s. We analyse this queueing systems using the matrix geometric method and derive an explicit expression for the stability condition. We obtain the steady-state behaviour of these systems and several system performance measures. The influence of various parameters on the systems performance measures and comparison on the cost analysis are also discussed through numerical example.

EFFICIENT AND ACCURATE FINITE DIFFERENCE METHOD FOR THE FOUR UNDERLYING ASSET ELS

  • Hwang, Hyeongseok;Choi, Yongho;Kwak, Soobin;Hwang, Youngjin;Kim, Sangkwon;Kim, Junseok
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제28권4호
    • /
    • pp.329-341
    • /
    • 2021
  • In this study, we consider an efficient and accurate finite difference method for the four underlying asset equity-linked securities (ELS). The numerical method is based on the operator splitting method with non-uniform grids for the underlying assets. Even though the numerical scheme is implicit, we solve the system of discrete equations in explicit manner using the Thomas algorithm for the tri-diagonal matrix resulting from the system of discrete equations. Therefore, we can use a relatively large time step and the computation of the ELS option pricing is fast. We perform characteristic computational test. The numerical test confirm the usefulness of the proposed method for pricing the four underlying asset equity-linked securities.

Discrete-Time Sliding Mode Control for Linear Systems with Matching Uncertainties

  • Myoen, Kohei;Hikita, Hiromitsu;Hanajima, Naohiko;Yamashita, Mitsuhisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.151.5-151
    • /
    • 2001
  • Sliding mode control is investigated for a discrete-time system with uncertainties. The narrowest neighborhood of the sliding surface is shown in which the state can remain. The range is determined by the upper bound of the absolute value of the uncertainty and the equation of the sliding surface. A sliding mode control algorithm is proposed to keep the state there without requiring an enormous input. Under the presence of the system parameter variations, the origin is not always stable although the sliding surface represents the stable dynamics and the state is kept in this neighborhood. The condition for the origin to be stable is investigated. Furthermore, the problems occurring when a continuous-time sliding mode control being ...

  • PDF

UNCONDITIONALLY STABLE GAUGE-UZAWA FINITE ELEMENT METHODS FOR THE DARCY-BRINKMAN EQUATIONS DRIVEN BY TEMPERATURE AND SALT CONCENTRATION

  • Yangwei Liao;Demin Liu
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.93-115
    • /
    • 2024
  • In this paper, the Gauge-Uzawa methods for the Darcy-Brinkman equations driven by temperature and salt concentration (DBTC) are proposed. The first order backward difference formula is adopted to approximate the time derivative term, and the linear term is treated implicitly, the nonlinear terms are treated semi-implicit. In each time step, the coupling elliptic problems of velocity, temperature and salt concentration are solved, and then the pressure is solved. The unconditional stability and error estimations of the first order semi-discrete scheme are derived, at the same time, the unconditional stability of the first order fully discrete scheme is obtained. Some numerical experiments verify the theoretical prediction and show the effectiveness of the proposed methods.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • 제20권2호
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.