• Title/Summary/Keyword: Discrete System

Search Result 2,483, Processing Time 0.032 seconds

Gait Control on Slope Way using Zero Moment Point for Robot (Zero Moment Point를 이용한 이족 보행 로봇의 경사로 걸음새 제어에 관한 연구)

  • Um, Seung-Hyun;Lim, Mee-Seub;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.530-532
    • /
    • 2006
  • In this paper, we propose stable walking algorithm using ZMP for the biped robot in the slope-way. At first, we define discrete state variables that classified stable area and unstable area by center of mass from ZMP during slope-way walking. For the stable walking gait, the discrete state controller for determining the high-level and low-level decision making are designed. The high-level decision making is composed of the discrete state variables; left foot support phase, right foot support phase, flat-way, and slope-way. Then the continuous state controller is implemented for the low-level decision making using ZMP.

  • PDF

[ $H_{\infty}$ ] Control of 2-D Discrete State Delay Systems

  • Xu Jianming;Yu Li
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.516-523
    • /
    • 2006
  • This paper is concerned with the $H_{\infty}$ control problem of 2-D discrete state delay systems described by the Roesser model. The condition for the system to have a specified $H_{\infty}$ performance is derived via the linear matrix inequality (LMI) approach. Furthermore, a design procedure for $H_{\infty}$ state feedback controllers is given by solving a certain LMI. The design problem of optimal $H_{\infty}$ controllers is formulated as a convex optimization problem, which can be solved by existing convex optimization techniques. Simulation results are presented to illustrate the effectiveness of the proposed results.

On the structure of a discrete-time $H_{\infty}$ two-degrees-of-freedom controller (이산시간 $H_{\infty}$ 2-자유도 제어기의 구조에 관한 연구)

  • 최병욱
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.569-572
    • /
    • 1996
  • Explicit state-space formulate for an H$_{.inf}$ based two-degrees-of-freedom robust controller are derived in discrete-time. The controller provides robust stability against coprime factor uncertainty, and a degree of robust performance in the sense of making the closed-loop system match a prespecified reference model. It is shown that the controller consists of a plant observer, the chosen reference model, and a generalized state feedback law associated with the plant and model states. The controller structure is shown to be relatively simple and thus may reduce the computational load on the digital control processor.

  • PDF

New Algorithm for Recursive Estimation in Linear Discrete-Time Systems with Unknown Parameters

  • Shin Vladimir;Ahn Jun-Il;Kim Du-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.4
    • /
    • pp.456-465
    • /
    • 2006
  • The problem of recursive filtering far linear discrete-time systems with uncertainties is considered. A new suboptimal filtering algorithm is herein proposed. It is based on the fusion formula, which represents an optimal mean-square linear combination of local Kalman estimates with weights depending on cross-covariances between local filtering errors. In contrast to the optimal weights, the suboptimal weights do not depend on current measurements, and thus the proposed algorithm can easily be implemented in real-time. High accuracy and efficiency of the suboptimal filtering algorithm are demonstrated on the following examples: damper harmonic oscillator motion and vehicle motion constrained to a plane.

Recursive Optimal State and Input Observer for Discrete Time-Variant Systems

  • Park, Youngjin;J.L.Stein
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.1 no.2
    • /
    • pp.113-120
    • /
    • 1999
  • One of the important challenges facing control engineers in developing automated machineryis to be able to monitor the machines using remote sensors. Observrs are often used to reconstruct the machine variables of interest. However, conventional observers are unalbe to observe the machine variables when the machine models, upon which the observers are based, have inputs that cannot be measured. Since this is often the case, the authors previsously developed a steady-state optimal state and input observer for time-invariant systems [1], this paper extends that work to time-variant systems. A recursive observer, similar to a Kalman-Bucy filter, is developed . This optimal observer minimizes the trace of the error variance for discrete , linear , time-variant, stochastic systems with unknown inputs.

  • PDF

Time-Coobservability in the Decentralized Supervisory Control of Timed Discrete Event Systems (시간 이산 사건 시스템의 분산 관리 제어에서 시간-상호관측가능성)

  • Park, Seong-Jin;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.396-399
    • /
    • 2009
  • This paper presents the notion of time-coobservability as a core condition far the existence of a decentralized supervisor achieving a given language specification in a timed discrete event system (TDES). A TDES is modeled by the framework of Brandin & Wonham [5], and the decentralized supervisory control architecture presented is extended from the untimed architecture of Yoo & Lafortune [1]. To develop the time-coobservability of a language specification, specifically this paper presents the C&P time-coobservability and D&A time-coobservability in the consideration of the event tick and forcing mechanism of decentralized supervisors.

A Modeling of Discrete Event System Using Temporal Logic Framework and Petri Net (시간논리 구조와 Petri Net의 합성방법을 사용한 이산사건 시스템의 모델링)

  • Kim, Jin-Kwon;Mo, Young-Seung;Ryu, Young-Guk;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.838-840
    • /
    • 1999
  • In this paper, modeling and analysis of discrete event systems by temporal logic frame works and petri net is considered. The reachability tree of the petri net can be used to solve the safeness, boundedness, conservation and coverability problems of discrete event systems. But the reachability tree of the petri net do not solve reachability and liveness problems in general. We proposed a method that synthesised the petri net and the temporal logic frameworks. This method slove some problems of petri net by logical representation of temporal logic frameworks.

  • PDF

Controller Design for Discrete-Time Affine T-S Fuzzy System with Parametric Uncertainties (파라미터 불확실성을 갖는 이산시간 어핀 T-S 퍼지 시스템의 제어기 설계)

  • Lee, Sang-In;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2516-2518
    • /
    • 2004
  • This paper proposes a stability condition in discrete-time affine Takagi-Sugeno (T-S) fuzzy systems with parametric uncertainties and then, introduces the design method of a fuzzy-model-based controller which guarantees the stability. The analysis is based on Lyapunov functions that are continuous and piecewise quadratic. The search for a piecewise quadratic Lyapunov function can be represented in terms of linear matrix inequalities (LMIs).

  • PDF

A heuristic search on noninferior solutions to the Halkin-typed linear quantized optimal control problem with two performance functions

  • Munakata, Tsunehiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.772-776
    • /
    • 1988
  • In quantized control systems, the control values can take only given discrete (e.g. integer) values. In case of dealing with the control problem on the discrete-time, final-stage fixed, quantized control systems with multidimensional performance functions, the first thing, new definition on noninferior solutions in these systems is necessary because of their discreteness in state variables, and the efficient search for those solutions at final-stage is unavoidable for seeking their discrete-time optimal controls to these systems. In this paper, to the quantized control problem given by the formulation of Halkin-typed linear control systems with two performance functions, a new definition on noninferior solutions of this system control problem and a heuristic effective search on these noninferior solutions are stated. By use of these concepts, two definitions on noninferior solutions and the algorithm consisted of 8 steps and attained by geometric approaches are given. And a numerical example using the present algorithm is shown.

  • PDF

Discrete-Event Based Packet Simulation for Sensor Network Routing Protocols (분산이벤트 기반 센서네트워크 패킷 라우팅 프로토클 시뮬레이션)

  • Chung, Kyung-Yul;Lee, Hoo-Rock;Choi, Dae-Seok;Kim, Yong-Sik;Lee, Soo-Tae;Rhyu, Keel-Soo
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.79-81
    • /
    • 2006
  • Simulation and physical implementation are both valuable tools in evaluating sensor network routing protocols, but neither alone is sufficient. In this paper, we present the implementation and analysis of sensor routing protocols on the discrete-event simulation system that allows existing nesC codes of sensor network routing protocols to be used to create a physical implementation of the same protocol. We have evaluated the Surge function of TinyOS through example implementations in the Ptolemy II of the unmodified codes and Direct-diffusion routing protocols using VIPTOS simulation models.

  • PDF