• 제목/요약/키워드: Discrete Stiffener

검색결과 19건 처리시간 0.02초

링보강 복합재료 원통셸의 과도해석 (Transient Analysis of Composite Cylindrical Shells with Ring Stiffeners)

  • 김영완
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1802-1812
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure Loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The results are verified by comparison with FEM results.

복합재료원통셸의 고유진동수 및 좌국하중에 대한 직교보강 특성 연구 (Study on the Orthogonal Stiffening Characteristics for the Natural Frequencies and Buckling Loads of the Composite Laminated Cylindrical Shells)

  • 이영신;김영완
    • 소음진동
    • /
    • 제6권4호
    • /
    • pp.457-467
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross -ply laminated composite cylindrical shell with the orthogonal stiffeners, i. e., axial stiffeners(stringers) and circumferential stiffeners(rings), are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

링보강 복합재료 원통셸의 과도응답 (Transient Response of Composite Cylindrical Shells with Ring Stiffeners)

  • 김영완;정강;박경조
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.883-888
    • /
    • 2001
  • The theoretical method is developed to investigate the effects of ring stiffeners on free vibration characteristics and transient response for the ring stiffened composite cylindrical shells subjected to the impulse pressure loading. In the theoretical procedure, the Love's thin shell theory combined with the discrete stiffener theory to consider the ring stiffening effect is adopted to formulate the theoretical model. The concentric or eccentric ring stiffeners are laminated with composite and have the uniform rectangular cross section. The modal analysis technique is used to develop the analytical solutions of the transient problem. The analysis is based on an expansion of the loads, displacements in the double Fourier series that satisfy the boundary conditions. The effect of stiffener's eccentricity, number, size, and position on transient response of the shells is examined. The theoretical results are verified by comparison with FEM results.

  • PDF

직교보강된 복합재료 원통셀의 진동 및 좌굴해석 (Free Vibration and Buckling Analysis of the Composite Laminated Cylindrical Shells with the Orthogonal Stiffeners)

  • 이영신;김영완
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 춘계학술대회논문집; 부산수산대학교, 10 May 1996
    • /
    • pp.349-354
    • /
    • 1996
  • The analytical solutions for the free vibration and buckling of cross-ply laminated composite cylindrical shell with axial stiffeners(stringers) and circumferential stiffeners(rings), that is, orthogonally stiffened shells, are presented using the energy method. The stiffeners are assumed to be an integral part of the shell and have been directly included in analysis(it's called discrete stiffener theory). The effect of the parameters such as the stacking sequences, the shell thickness, the shell length-to-radius ratio are studied. By comparison with the previously published analytical results for the stiffened cylindrical shells, it is shown that natural frequencies can be determined with adequate accuracy.

  • PDF

사각개구부를 갖는 링보강 원통셸의 진동해석 (Vibration Analysis of Ring Stiffened Cylindrical Shells with a Rectangular Cutout)

  • 김영완;이영신
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.2040-2049
    • /
    • 1999
  • The Rayleigh-Ritz method is used to investigate the natural frequencies and mode shapes of the ring stiffened cylindrical shells with a rectangular cutout. The cutout is located on the center of the shell. The Love's thin shell theory combined with the discrete stiffener theory is adopted to formulate the analytical model of the shell. The effect of stiffener eccentricity, number, and position on vibration characteristics of the shell is examined. Also the effect of cutout size is examined. By comparison with previously published analytical and new FEM results, it is shown that natural frequencies and mode shapes can be determined with adequate accuracy.

집중질량을 고려한 보강된 사다리꼴 주름판의 진동해석 (Vibration Analysis of Trapezoidal Corrugated Plates with Stiffeners and Lumped Masses)

  • 정강;김영완
    • 한국소음진동공학회논문집
    • /
    • 제24권5호
    • /
    • pp.414-420
    • /
    • 2014
  • In this paper, the vibration characteristics of the trapezoidal corrugated plate with axial stiffeners and lumped masses are investigated by the analytical method. The corrugated plate can be treated as an equivalent orthotropic plate as this plate has different flexure properties in two perpendicular directions; flexible in the corrugation direction and stiff in the transverse direction. The effective extensional and flexural stiffness of the equivalent plate are considered to obtain the precise solution in the analysis. The plate is stiffened by concentric stiffeners horizontally to the corrugation direction. The discrete stiffener theory is adopted to consider the position of stiffener. To demonstrate the validity of the proposed approach, the comparison is made with the results of 3D ANSYS finite element solutions. Some numerical results are presented to check the effect of the geometric properties.

Pareto 최적점 기반 다목적함수 기법 개발에 관한 연구 (Development of a Multi-objective function Method Based on Pareto Optimal Point)

  • 나승수
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.175-182
    • /
    • 2005
  • It is necessary to develop an efficient optimization technique to optimize the engineering structures which have given design spaces, discrete design values and several design goals. As optimization techniques, direct search method and stochastic search method are widely used in designing of engineering structures. The merit of the direct search method is to search the optimum points rapidly by considering the search direction, step size and convergence limit. And the merit of the stochastic search method is to obtain the global optimum points by spreading point randomly entire the design spaces. In this paper, a Pareto optimal based multi-objective function method (PMOFM) is developed by considering the search direction based on Pareto optimal points, step size, convergence limit and random search generation . The PMOFM can also apply to the single objective function problems, and can consider the discrete design variables such as discrete plate thickness and discrete stiffener spaces. The design results are compared with existing Evolutionary Strategies (ES) method by performing the design of double bottom structures which have discrete plate thickness and discrete stiffener spaces.

Structural optimization of stiffener layout for stiffened plate using hybrid GA

  • Putra, Gerry Liston;Kitamura, Mitsuru;Takezawa, Akihiro
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.809-818
    • /
    • 2019
  • The current trend in shipyard industry is to reduce the weight of ships to support the reduction of CO2 emissions. In this study, the stiffened plate was optimized that is used for building most of the ship-structure. Further, this study proposed the hybrid Genetic Algorithm (GA) technique, which combines a genetic algorithm and subsequent optimization methods. The design variables included the number and type of stiffeners, stiffener spacing, and plate thickness. The number and type of stiffeners are discrete design variables that were optimized using the genetic algorithm. The stiffener spacing and plate thickness are continuous design variables that were determined by subsequent optimization. The plate deformation was classified into global and local displacement, resulting in accurate estimations of the maximum displacement. The optimization result showed that the proposed hybrid GA is effective for obtaining optimal solutions, for all the design variables.

보강된 사다리꼴 주름판의 과도 응답 해석 (Transient Response Analysis of Trapezoidal Corrugated Plates with Stiffeners)

  • 박경조;김영완
    • 한국소음진동공학회논문집
    • /
    • 제24권10호
    • /
    • pp.788-794
    • /
    • 2014
  • In this paper, the transient response analysis of the trapezoidal corrugated plate subjected to the pulse load is investigated by the theoretical method. Three types of pulse loads are considered: stepped, isosceles triangular and right triangular pulse loads. The corrugated plates can be represented as an orthotropic plate. Both the effective extensional and flexural stiffness of this equivalent orthotropic plate are considered in the analysis. The plate is stiffened by concentric stiffeners perpendicular to the corrugation direction. The stiffening effect is represented by the discrete stiffener theory. This theoretical results are validated by those obtained from 3D finite element analysis based on shell elements. Some numerical results are presented to check the effect of the geometric properties.

유전자 기법을 이용한 복합재 보강구조물 외피 및 보강재의 적층각 최적설계 (Optimal Design of Skin and Stiffener of Stiffened Composite Shells Using Genetic Algorithms)

  • 윤인세;최흥섭;김철
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.233-236
    • /
    • 2002
  • An efficient method was developed in this study to obtain optimal stacking sequences, thicknesses, and minimum weights of stiffened laminated composite shells under combined loading conditions and stiffener layouts using genetic algorithms (GAs) and finite element analyses. Among many parameters in designing composite laminates determining a optimal stacking sequence that may be formulated as an integer programming problem is a primary concern. Of many optimization algorithms, GAs are powerful methodology for the problem with discrete variables. In this paper the optimal stacking sequence was determined, which gives the maximum critical buckling load factor and the minimum weight as well. To solve this problem, both the finite element analysis by ABAQUS and the GA-based optimization procedure have been implemented together with an interface code. Throughout many parametric studies using this analysis tool, the influences of stiffener sizes and three different types of stiffener layouts on the stacking sequence changes were throughly investigated subjected to various combined loading conditions.

  • PDF