• 제목/요약/키워드: Discrete Space Problem

검색결과 104건 처리시간 0.022초

FINITE ELEMENT APPROXIMATION OF THE DISCRETE FIRST-ORDER SYSTEM LEAST SQUARES FOR ELLIPTIC PROBLEMS

  • SHIN, Byeong-Chun
    • 대한수학회논문집
    • /
    • 제20권3호
    • /
    • pp.563-578
    • /
    • 2005
  • In [Z. Cai and B. C. Shin, SIAM J. Numer. Anal. 40 (2002), 307-318], we developed the discrete first-order system least squares method for the second-order elliptic boundary value problem by directly approximating $H(div){\cap}H(curl)-type$ space based on the Helmholtz decomposition. Under general assumptions, error estimates were established in the $L^2\;and\;H^1$ norms for the vector and scalar variables, respectively. Such error estimates are optimal with respect to the required regularity of the solution. In this paper, we study solution methods for solving the system of linear equations arising from the discretization of variational formulation which possesses discrete biharmonic term and focus on numerical results including the performances of multigrid preconditioners and the finite element accuracy.

ADAPTIVE CHANDRASEKHAR FILLTER FOR LINEAR DISCRETE-TIME STATIONALY STOCHASTIC SYSTEMS

  • Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국제학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.1041-1044
    • /
    • 1988
  • This paper considers the design problem of adaptive filters based an the state-space models for linear discrete-time stationary stochastic signal processes. The adaptive state estimator consists of both the predictor and the sequential prediction error estimator. The discrete Chandrasakhar filter developed by author is employed as the predictor and the nonlinear least-squares estimator is used as the sequential prediction error estimator. Two models are presented for calculating the parameter sensitivity functions in the adaptive filter. One is the exact model called the linear innovations model and the other is the simplified model obtained by neglecting the sensitivities of the Chandrasekhar X and Y functions with respect to the unknown parameters in the exact model.

  • PDF

직교배열표를 이용한 불연속 공간에서의 교호작용을 고려한 구조물 설계 (Design of Structure Using Orthogonal Array Considering Interactions in Discrete Design Spaces)

  • 황광현;권우성;이권희;박경진
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2952-2962
    • /
    • 2000
  • The design of experiment(DOE) is getting more attention in the engineering community since it is easy to understand and apply. Recently, engineering designers are adopting DOE with orthogonal arrays when they want to design products in a discrete design space. In this research, a design flow with orthogonal arrays is defined for structural design according to the general DOE. The design problem is defined as a general structural optimization problem. Sensitivity information is evaluated by the analysis of variance(ANOVA), and an optimum design is determined from analysis of means(ANOM). Interactions between design variables are investigated to achieve additivity which should be valid in DOE. When strong interactions exit, a method is proposed. Some methods to consider the problem are suggested.

A Possibilistic C-Means Approach to the Hough Transform for Line Detection

  • Frank Chung-HoonRhee;Shim, Eun-A
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2003년도 ISIS 2003
    • /
    • pp.476-479
    • /
    • 2003
  • The Rough transform (HT) is often used for extracting global features in binary images, for example curve and line segments, from local features such as single pixels. The HT is useful due to its insensitivity to missing edge points and occlusions, and robustness in noisy images. However, it possesses some disadvantages, such as time and memory consumption due to the number of input data and the selection of an optimal and efficient resolution of the accumulator space can be difficult. Another problem of the HT is in the difficulty of peak detection due to the discrete nature of the image space and the round off in estimation. In order to resolve the problem mentioned above, a possibilistic C-means approach to clustering [1] is used to cluster neighboring peaks. Several experimental results are given.

  • PDF

Trajectory Optimization for a Supersonic Air-Breathing Missile System Using Pseudo-Spectral Method

  • Park, Jung-Woo;Tahk, Min-Jea;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제10권1호
    • /
    • pp.112-121
    • /
    • 2009
  • This paper deals with supersonic air-breathing missile system. A supersonic air-breathing missile system has very complicated and incoherent thrust characteristics with respect to outer and inner environment during operation. For this reason, the missile system has many maneuver constraints and is allowed to operate within narrow flight envelope. In this paper, trajectory optimization of the missile is accomplished. The trajectory optimization problem is formulated as a discrete parameter optimization problem. For this formulation, Legendre Pseudo-Spectral method is introduced. This method is based on calculating the state and control variables on Legendre-Gauss-Lobatto (LGL) points. This approach helps to find approximated derivative and integration quantities simply. It is shown that, for this trajectory optimization, trend analysis is performed from thrust characteristics on various conditions so that the trajectory optimization is accomplished with fine initial guess with these results.

상태궤환을 이용한 2차원 시스템의 극배치

  • 이원규;이상혁
    • 한국통신학회논문지
    • /
    • 제15권8호
    • /
    • pp.659-666
    • /
    • 1990
  • 최근에 이산치 2차원 시스템을 기술하는 여러가지 상태공간모델이 제안되어 왔다. 본 논문에서는 Roesser가 제안한 상태공간모델을 근거로 상태궤환을 이용하여 2차원 시스템의 극배치 문제를 고찰한다. 극배치 설계는 2단계로 나누어 1단계에서는 변환된 시스템의 비대각 행렬(off diagonal matrix)을 0으로 하는 조건을 유도하고 2단계에서는 2차원 시스템의 극배치 문제가 2개의 1차원 시스템의 극배치 문제도 된다는 것을 보여준다. 마지막으로 극배치 기법을 설명하기 위한 예를 들었다.

  • PDF

An Observation System of Hemisphere Space with Fish eye Image and Head Motion Detector

  • Sudo, Yoshie;Hashimoto, Hiroshi;Ishii, Chiharu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.663-668
    • /
    • 2003
  • This paper presents a new observation system which is useful to observe the scene of the remote controlled robot vision. This system is composed of a motionless camera and head motion detector with a motion sensor. The motionless camera has a fish eye lens and is for observing a hemisphere space. The head motion detector has a motion sensor is for defining an arbitrary subspace of the hemisphere space from fish eye lens. Thus processing the angular information from the motion sensor appropriately, the direction of face is estimated. However, since the fisheye image is distorted, it is unclear image. The partial domain of a fish eye image is selected by head motion, and this is converted to perspective image. However, since this conversion enlarges the original image spatially and is based on discrete data, crevice is generated in the converted image. To solve this problem, interpolation based on an intensity of the image is performed for the crevice in the converted image (space problem). This paper provides the experimental results of the proposed observation system with the head motion detector and perspective image conversion using the proposed conversion and interpolation methods, and the adequacy and improving point of the proposed techniques are discussed.

  • PDF

Dolphin Echolocation Optimization: Continuous search space

  • Kaveh, A.;Farhoudi, N.
    • Advances in Computational Design
    • /
    • 제1권2호
    • /
    • pp.175-194
    • /
    • 2016
  • Nature has provided inspiration for most of the man-made technologies. Scientists believe that dolphins are the second to humans in smartness and intelligence. Echolocation is the biological sonar used by dolphins for navigation and hunting in various environments. This ability of dolphins is mimicked in this paper to develop a new optimization method. Dolphin Echolocation Optimization (DEO) is an optimization method based on dolphin's approach for hunting food and exploration of environment. DEO has already been developed for discrete optimization search space and here it is extended to continuous search space. DEO has simple rules and is adjustable for predetermined computational cost. DEO provides the optimum results and leads to alternative optimality curves suitable for the problem. This algorithm has a few parameters and it is applicable to a wide range of problems like other metaheuristic algorithms. In the present work, the efficiency of this approach is demonstrated using standard benchmark problems.

순간 및 연속 추력을 이용한 지구-달 최적 전이궤도 설계에 관한 연구 (A Study on Optimal Earth-Moon Transfer Orbit Design Using Mixed Impulsive and Continuous Thrust)

  • 노태수;전경언
    • 한국항공우주학회지
    • /
    • 제38권7호
    • /
    • pp.684-692
    • /
    • 2010
  • 본 논문에서는 지구-달 천이를 위한 최적 궤도 설계에 관한 연구를 수행하였다. 지구와 달의 인력을 동시에 고려한 평면상 제한 3체 궤도 운동 모델을 바탕으로 지구 출발시에는 순간 추력을, 지구-달 천이 과정 및 달 임무궤도 투입시에는 연속 추력을 사용하는 혼합형 궤도전이 방법을 제시하였다. 최적화 풀이 방법으로서 Direct Transcription 및 Collocation을 이용한 비선형 프로그래밍 기법을 적용하였으며, 지구 출발 및 달 임무궤도 투입 궤적의 형상은 순간 추력의 연속 추력에 대한 상대 가중치 및 비행시간에 의하여 매우 달라질 수 있음을 파악하였다.

QUADRATURE BASED FINITE ELEMENT METHODS FOR LINEAR PARABOLIC INTERFACE PROBLEMS

  • Deka, Bhupen;Deka, Ram Charan
    • 대한수학회보
    • /
    • 제51권3호
    • /
    • pp.717-737
    • /
    • 2014
  • We study the effect of numerical quadrature in space on semidiscrete and fully discrete piecewise linear finite element methods for parabolic interface problems. Optimal $L^2(L^2)$ and $L^2(H^1)$ error estimates are shown to hold for semidiscrete problem under suitable regularity of the true solution in whole domain. Further, fully discrete scheme based on backward Euler method has also analyzed and optimal $L^2(L^2)$ norm error estimate is established. The error estimates are obtained for fitted finite element discretization based on straight interface triangles.