• Title/Summary/Keyword: Discrete Space Problem

Search Result 104, Processing Time 0.022 seconds

Nonlinear Model Predictive Control Using a Wiener model in a Continuous Polymerization Reactor

  • Jeong, Boong-Goon;Yoo, Kee-Youn;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.49-52
    • /
    • 1999
  • A subspace-based identification method of the Wiener model, consisting of a state-space linear block and a polynomial static nonlinearity at the output, is used to retrieve from discrete sample data the accurate information about the nonlinear dynamics. Wiener model may be incorporated into model predictive control (MPC) schemes in a unique way which effectively removes the nonlinearity from the control problem, preserving many of the favorable properties of linear MPC. The control performance is evaluated with simulation studies where the original first-principles model for a continuous MMA polymerization reactor is used as the true process while the identified Wiener model is used for the control purpose. On the basis of the simulation results, it is demonstrated that, despite the existence of unmeasured disturbance, the controller performed quite satisfactorily for the control of polymer qualities with constraints.

  • PDF

Robustness analysis of pole assignment in a specified circle for perturbed systems (섭동 시스템에 대한 규정된 원 내로의 극점배치 견실성 해석)

  • Kim, Ga-Gue;Choi, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.1 no.2
    • /
    • pp.78-82
    • /
    • 1995
  • In this paper, we consider the robustness analysis problem in state space models with linear time invariant perturbations. Based upon the discrete-time Lyapunov approach, sufficient conditions are derived for the eigenvalues of perturbed matrix to be located in a circle, and robustness bounds on perturbations are obtained. Spaecially, for the case of a diagonalizable hermitian matrix the bound is given in terms of the nominal matrix without the solution of Lyapunov equation. This robustness analysis takes account not only of stability robustness but also of certain types of performance robustness. For two perturbation classes resulting bounds are shown to be improved over the existing ones. Examples given include comparison of the proposed analysis method with existing one.

  • PDF

A Simple Volume Tracking Method For Compressible Two-Phase Flow

  • SHYUE KEH-MING
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.237-241
    • /
    • 2001
  • Our goal is to present a simple volume-of-fluid type interface-tracking algorithm to compressible two-phase flow in two space dimensions. The algorithm uses a uniform underlying Cartesian grid with some cells cut by the tracked interfaces into two subcells. A volume-moving procedure that consists of two basic steps: (1) the update of volume fractions in each grid cell at the end of the time step, and (2) the reconstruction of interfaces from discrete set of volume fractions, is employed to follow the dynamical behavior of the interface motion. As in the previous work with a surface-tracking procedure for general front tracking (LeVeque & Shyue 1995, 1996), a high resolution finite volume method is then applied on the resulting slightly nonuniform grid to update all the cell values, while the stability of the method is maintained by using a large time step wave propagation approach even in the presence of small cells and the use of a time step with respect to the uniform grid cells. A sample preliminary numerical result for an underwater explosion problem is shown to demonstrate the feasibility of the algorithm for practical problems.

  • PDF

A state estimator design for servo system with delayed input (지연입력을 가진 서보시스템의 상태추정자 설계)

  • Kong, Jeong-Ja;Huh, Uk-Youl;Jeong, Kab-Kyun
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.537-540
    • /
    • 1998
  • This thesis deals with the design problem of the state estimator for digital servo system. Digital servo system has input time delay, which depends on the size of control algorithm. The delayed input is a factor that brings out the state estimation error. So, in order to reduce this state estimation error of the system, we proposes a state estimator in which the delayed input of the system is considered. At first, a discrete-time state-space model is established accounting for the delayed input. Next, the state estimator is designed based on this model. we employ Kalman filter algorithm in design of the state estimator. The performance of proposed state estimator is exemplified via some simulations and experiment for servo system. And robustness of the proposed estimator to modelling error by variation of the system parameter is also shown in these simulations.

  • PDF

The State Estimator Design for Servo system with Delayed Input (지연 입력을 가진 서보시스템의 상태 추정자 설계)

  • Shin, Doo-Jin;Kong, Jeong-Ja;Huh, Uk-Youl
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.607-614
    • /
    • 1999
  • This paper deals with the design problem of the state estimator for servo system. The servo system has input time delay which depends on the computational time of control algorithm. The delayed input is a factor that brings out the state estimation error. So in order to reduce the state estimation error of the system, we propose a state estimator in which the delayed input of the system is considered. For this purpose, discrete time state space model is established accounting for the delayed input and a state estimator is designed based on this model. Kalman filter algorithm is employed in the design of the state estimator. The proposed estimator is used in the speed control of servo system with delayed input. Performance of the proposed state estimator is exemplified via simulations and experiments for servo system. Also, robustness of the proposed estimator to modeling error by variation of the system parameters is also shown in simulations.

  • PDF

Optimal Production Design Using Genetic Algorithms (유전알고리즘을 이용한 최적생산설계)

  • 류영근
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.49
    • /
    • pp.115-123
    • /
    • 1999
  • An optimization problem is to select the best of many possible design alternatives in a complex design space. Genetic algorithms, one of the numerous techniques to search optimal solution, have been successfully applied to various problems (for example, parameter tuning in expert systems, structural systems with a mix of continuous, integer and discrete design variables) that could not have been readily solved with more conventional computational technique. But, conventional genetic algorithms are ill defined for two classes of problems, ie., penalty function and fitness scaling. Therefore, this paper develops Improved genetic algorithms(IGA) to solve these problems. As a case study, numerical examples are demonstrated to show the effectiveness of the Improved genetic algorithms.

  • PDF

Time-Optimal Multistage Controllers for Nonlinear Continuous Processes (비선형 연속계를 위한 다단계 시간최적 제어기)

  • Yoon, Joong sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.6
    • /
    • pp.128-136
    • /
    • 1995
  • The problem addressed in this paper is that of the on-line computational burden of time-optimal control laws for quick, strongly nonlinear systems like revolute robots. It will be demonstrated that a large amount of off-line computation can be substituted for most of the on-line burden in cases of time optimization with constrained inputs if differential point-to- point specifications can be relaxed to cell-to-cell transitions. These cells result from a coarse discretization of likely swaths of state space into a set of nonuniform, contiguous volumes of relatively simple shapes. The cell boundaries approximate stream surfaces of the phase fluid and surfaces of equal transit times. Once the cells have been designed, the bang- bang schedules for the inputs are determined for all likely starting cells and terminating cells. The scheduling process is completed by treating all cells into which the trajectories might unex- pectedly stray as additional starting cells. Then an efficient-to-compute control law can be based on the resulting table of optimal strategies.

  • PDF

Analysis on the transient response of Polyphase DFT filter banks in the frequency hopping communication satellite transponder (주파수 도약 통신위성 중계기의 다상 DFT 필터뱅크 과도기 응답 분석)

  • Lee, Daeil;Joo, Jaikwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.7
    • /
    • pp.610-615
    • /
    • 2014
  • Filterbanks have been widely used in the field of multi-channel signal processing for their simple efficient implementation architectures. Especially, the polyphase DFT(Discrete Fourier Transform) filterbank is the most preferred filterbank for the uniform spaced multi-channel processing due to its simplicity. In frequency hopped communication systems, however, the use of the polyphase DFT filterbank is limited due to its undesirable transient response from hop-to-hop transitions. In this paper, the transient response of polyphase DFT filterbanks in the hop-to-hop transition was analyzed, and the efficient methods to overcome such a problem was proposed. Simulation results showed that the proposed schemes could resolve this issue efficiently.

Shape Scheme and Size Discrete Optimum Design of Plane Steel Trusses Using Improved Genetic Algorithm (개선된 유전자 알고리즘을 이용한 평면 철골트러스의 형상계획 및 단면 이산화 최적설계)

  • Kim, Soo-Won;Yuh, Baeg-Youh;Park, Choon-Wok;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.2 s.12
    • /
    • pp.89-97
    • /
    • 2004
  • The objective of this study is the development of a scheme and discrete optimum design algorithm, which is based on the genetic algorithm. The algorithm can perform both scheme and size optimum designs of plane trusses. The developed Scheme genetic algorithm was implemented in a computer program. For the optimum design, the objective function is the weight of structures and the constraints are limits on loads and serviceability. The basic search method for the optimum design is the genetic algorithm. The algorithm is known to be very efficient for the discrete optimization. However, its application to the complicated structures has been limited because of the extreme time need for a number of structural analyses. This study solves the problem by introducing the size & scheme genetic algorithm operators into the genetic algorithm. The genetic process virtually takes no time. However, the evolutionary process requires a tremendous amount of time for a number of structural analyses. Therefore, the application of the genetic algorithm to the complicated structures is extremely difficult, if not impossible. The scheme genetic algorithm operators was introduced to overcome the problem and to complement the evolutionary process. It is very efficient in the approximate analyses and scheme and size optimization of plane trusses structures and considerably reduces structural analysis time. Scheme and size discrete optimum combined into the genetic algorithm is what makes the practical discrete optimum design of plane fusses structures possible. The efficiency and validity of the developed discrete optimum design algorithm was verified by applying the algorithm to various optimum design examples: plane pratt, howe and warren truss.

  • PDF

A Study on Semi-fragile Watermarking for Robust Authentication on Image Compression (영상압축에 강인한 변질검증 워터마킹에 관한 연구)

  • Ahn, Sung-Cheol;Lee, Kyoung-Hak;Park, Hwa-Bum;Ko, Hyung-Hwa
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1165-1172
    • /
    • 2006
  • The rapid progress of the software has enabled individuals to copy and remark digital contents, which was only done by professionals. As a solution for the problems, contents producer needs to have certification and inspection of its contents and hold the proprietary right. A fragile watermarking method is able to detect the distortion and damage of watermarked image, but the watermark is also fragile on standardized image compression. That is the problem of fragile watermarking technique. We propose semi-fragile watermarking technique that is robust in the image processing such as JPEG compression used on computer, but it is fragile on the addition of noise and other attacks. In the proposed method, we can generate the watermarks of an image from the relationship between two block coefficients, also the generated watermark is inserted into insensible part of HVS(Human Visual System) after processing DCT(Discrete Cosine Transform) and using quantization. As a result, on the spatial domain, high detection of distortion has been possible even in slight changes, and could detect the corrupted blocks on image. Therefore, it is simple to judge the pixels at which some location has been changed in the space.