• Title/Summary/Keyword: Discrete Range

Search Result 289, Processing Time 0.026 seconds

WDM Optical True Time-Delay for X-Band Phased Array Antennas (X-밴드 위상 배열 안테나를 위한 WDM 광 실시간 지연선로)

  • Jung, Byung-Min;Shin, Jong-Dug;Kim, Boo-Gyoun
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.2
    • /
    • pp.162-166
    • /
    • 2007
  • In this paper, we propose a WDM optical true time-delay (OTTD) beam former for phased way antenna (PAA) systems. It is composed of a delay lines matrix and a multiwavelength source with discrete DFB laser diodes. The building block of a delay lines matrix is a $2\times2$ optical MEMS switch with proper fiber-optic delay line connected between cross ports. A $4\times3$ matrix using four DFB lasers has been fabricated with unit time-delay difference of 12 ps. Maximum time-delay error was measured to be -1.74 ps and +1.14 ps at a radiation angle of $46.05^{\circ}$, corresponding to error range of $-2.87^{\circ}\sim+1.88^{\circ}$. By measuring time-delays at six different RF frequencies from 5- to 10-GHz, we verified the true time-delay characteristic of our OTTD.

Micro Sensor Away and its Application to Recognizing Explosive Gases (마이크로 센서 어레이 제작 및 폭발성 가스 인식으로의 응용)

  • 이대식;이덕동
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.1
    • /
    • pp.11-19
    • /
    • 2003
  • A micro sensor array with 4 discrete sensors integrated on a microhotplate was developed for identifying the kinds and quantities of explosive gases. The sensor array consisited of four tin oxide-based thin films with the high and broad sensitivity to the tested explosive gases and uniform thermal distribution on the plate. The microhotplate, using silicon substrate with N/O/N membrane, dangling in air by Al bonding wires, and controlling the thickness by chemical mechanical process (CMP), has been designed and fabricated. By employing the sensitivity signal of the sensor array at 40$0^{\circ}C$, we could reliably classily the kinds and quantities of the explosive gases like butan, propane, LPG, and carbon monoxide within the range of threshold limit values (TLVs), employing principal component analysis (PCA).

An Object Oriented Data Model of a Spatiotemporal Geographic-Object Based on Attribute Versioning (속성 버전화에 기반한 시공간 지리-객체의 객체 지향 데이터 모델)

  • Lee, Hong-Ro
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.38 no.6
    • /
    • pp.1-17
    • /
    • 2001
  • Nowadays, spatiotemporal data models deal with objects which can be potentially useful for wide range applications in order to describe complex objects with spatial and/or temporal facilities. However, the information needed by each application usually varies, specially in the geographic information which depends on the kind of time oriented views, as defined in the modeling phase of the spatiotemporal geographic data design. To be able to deal with such diverse needs, geographic information systems must offer features that manipulate geometric, space-dependent(i.e, thematic), and spatial relationship positions with multiple time oriented views. This paper addresses problems of the formal definition of relationships among spatiotemporal objects and their properties on geographic information systems. The geographical data are divided in two main classes : geo-objects and geo-fields, which describe discrete and continuous representations of the spatial reality. I study semantics and syntax about the temporal changes of attributes and the relationship roles on geo-objects and non-geo-objects, This result will contribute on the design of object oriented spatiotemporal data model which is distinguishied from the recent geographic information system of the homogeneously anchored spatial objects

  • PDF

Method for Analysis of C3 System of Systems Using Transformation of Federation Based on an Extended DEVS Formalism (확장된 DEVS 형식론 기반 페더레이션의 변환을 통한 C3 복합 체계의 분석 방법)

  • Kang, Bong Gu;Kim, Tag Gon
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.3
    • /
    • pp.13-21
    • /
    • 2018
  • The system of systems (SoS) based analysis method for the C3 system consisting of the communication system and the command and control (C2) system has the advantage that detailed analysis is possible, but it requires long execution time per one trial, which makes the analysis of various scenarios difficult. To solve this problem, this paper proposes a method for analysis of C3 SoS using a transformation of a federation into an integrated simulation. This transformation technique reduces the execution time while maintaining accuracy by abstracting the system other than the one to be analyzed, consisting of model hypothesis and function identification. The former can construct an abstracted model for the simulation through the proposed extended Discrete Event Systems Specification (DEVS) formalism and the latter can express the characteristics of the model influenced by other systems. From the case study on C and C2 analysis, the experimental results show that this method shortened the time considerably while maintaining the accuracy within an acceptable error range and we expect that this method will enable the exploratory analysis of the complex systems other than C3.

Spherical Harmonics Power-spectrum of Global Geopotential Field of Gaussian-bell Type

  • Cheong, Hyeong-Bin;Kong, Hae-Jin
    • Journal of the Korean earth science society
    • /
    • v.34 no.5
    • /
    • pp.393-401
    • /
    • 2013
  • Spherical harmonics power spectrum of the geopotential field of Gaussian-bell type on the sphere was investigated using integral formula that is associated with Legendre polynomials. The geopotential field of Gaussian-bell type is defined as a function of sine of angular distance from the bell's center in order to guarantee the continuity on the global domain. Since the integral-formula associated with the Legendre polynomials was represented with infinite series of polynomial, an estimation method was developed to make the procedure computationally efficient while preserving the accuracy. The spherical harmonics power spectrum was shown to vary significantly depending on the scale parameter of the Gaussian bell. Due to the accurate procedure of the new method, the power (degree variance) spanning over orders that were far higher than machine roundoff was well explored. When the scale parameter (or width) of the Gaussian bell is large, the spectrum drops sharply with the total wavenumber. On the other hand, in case of small scale parameter the spectrum tends to be flat, showing very slow decaying with the total wavenumber. The accuracy of the new method was compared with theoretical values for various scale parameters. The new method was found advantageous over discrete numerical methods, such as Gaussian quadrature and Fourier method, in that it can produce the power spectrum with accuracy and computational efficiency for all range of total wavenumber. The results of present study help to determine the allowable maximum scale parameter of the geopotential field when a Gaussian-bell type is adopted as a localized function.

Design of Computer Access Devices for Severly Motor-disability Using Bio-potentials (생체전위를 이용한 중증 운동장애자들을 위한 컴퓨터 접근제어장치 설계)

  • Jung, Sung-Jae;Kim, Myung-Dong;Park, Chan-Won;Kim, Il-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.11
    • /
    • pp.502-510
    • /
    • 2006
  • In this paper, we describe implementation of a computer access device for the severly motor-disability. Many people with severe motor disabilities need an augmentative communication technology. Those who are totally paralyzed, or 'locked-in' cannot use conventional augmentative technologies, all of which require some measure of muscle control. The forehead is often the last site to suffer degradation in cases of severe disability and degenerative disease. For example, In ALS(Amyotrophic Lateral Sclerosis) and MD(Muscular dystrophy) the ocular motorneurons and ocular muscles are usually spared permitting at least gross eye movements, but not precise eye pointing. We use brain and body forehead bio-potentials in a novel way to generate multiple signals for computer control inputs. A bio-amplifier within this device separates the forehead signal into three frequency channels. The lowest channel is responsive to bio-potentials resulting from an eye motion, and second channel is the band pass derived between 0.5 and 45Hz, falling within the accepted Electroencephalographic(EEG) range. A digital processing station subdivides this region into eleven components frequency bands using FFT algorithm. The third channel is defined as an Electromyographic(EMG) signal. It responds to contractions of facial muscles and is well suited to discrete on/off switch closures, keyboard commands. These signals are transmitted to a PC that analyzes in a time series and a frequency region and discriminates user's intentions. That software graphically displays user's bio-potential signals in the real time, therefore user can see their own bio-potentials and control their physiological signals little by little after some training sessions. As a result, we confirmed the performance and availability of the developed system with experimental user's bio-potentials.

Development of a Fast Neutron Detector (속중성자 탐지용 반도체 소자 개발)

  • 이남호;김승호;김양모
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.12
    • /
    • pp.545-552
    • /
    • 2003
  • When a Si PIN diode is exposed to fast neutrons, it results in displacement damage to the Si lattice structure of the diode. Defects induced from structural dislocation become effective recombination centers for carriers which pass through the base of a PIN diode. Hence, increasing the resistivity of the diode decreases the current for the applied forward voltage. This paper involves the development of a neutron sensor based on the phenomena of the displacement effect damaged by neutron exposure. The neutron effect on the semiconductor was analyzed. Several PIN diode arrays with various thickness and cross-section area of the intrinsic layer(I layer) were fabricated. Under irradiation tests with a neutron beam, the manufactured diodes have a good linearity to neutron dose and show that the increase of thickness of I layer and the decrease of cross-section of PIN diodes improve the sensitivity. Newly developed PIN diodes with thicker I layer and various cross section, were retested and then showed the best neutron sensitivity at the condition that the I layer thickness was similar to a side length. On the basis of two test results, final discrete PIN diodes with a rectangular shape were manufactured and the characteristics as neutron detectors were analyzed through the neutron beam test using on-line electronic dosimetry system. Developed PIN diode shows a good linearity as dosimetry in the range of 0 to 1,000cGy(Tissue) and its neutron sensitivity is 13mV/cGy at constant current of 5mA, that is three times higher than that of commercially available neutron detectors. And the device shows little dependency on the orientation of the neutron beam and a considerable stability in annealing test for a long period.

Selection of Suitable Aggregates for Long-term Stability of Concrete (콘크리트 장기 안정성을 위한 골재의 선택)

  • Yang, Dong-Yoon;Lee, Dong-Young
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.519-525
    • /
    • 1995
  • Recently, there have been several cases of serious accidents on concrete structure resulting from rapid deterioration of concrete strength. On the view point of long term stability of concrete, deterioration of concrete strength is mostly due to chemical reaction between alkali and reactive aggregates (alkali-aggreagte reaction; AAR) in concrete rather than a problem of execution. For long-term stability of concrete, concrete aggregates must be carefully selected. Some of rocks used for concrete aggregates contain deleterious minerals reactive to alkali components in concrete. Most of AAR result from chemical reaction between alkali components and reactive silica minerals in aggregates (so called alkali-silica reaction; ASR). The silica minerals are as follows; quartz with seriously distorted lattice structure, volcanic glass, chalcedony, opal, cristobalite, tridymite, etc. ASR may cause expansion and cracks, further collapse in concrete structure, in a few years. In case of crushed aggregates, only a part of rock mass without reactive minerals must be produced in aggregates mine after thorough examination of the distribution of rocks with reactive minerals. In case of natural aggregates, the total content of reactive minerals must be calculated, if, the content is more than 20%, the rate should be lower by mixing other non-reactive crushed- or natural aggregates. If it is obliged to use concrete aggregates all containing deleterious minerals in a discrete area, they must be used with low alkali cement Even if it is low quality in the chemical properties, aggregates with suitable range in the physical properties can be utilized as the aggregate of other purposes.

  • PDF

A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head (액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성)

  • Hong, Hyun-Uk;Bae, Sang-Hyun;Kwon, Soon-Il;Lee, Je-Hyun;Do, Jeong-Hyeon;Choi, Baig-Gyu;Kim, In-Soo;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

Design of an Interface System IC for Automobile ABS/TCS (자동차용 ABS/TCS 인터페이스 시스템 IC의 설계)

  • Lee, Sung-Pil;Kim, Chan
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.7 no.4
    • /
    • pp.195-200
    • /
    • 2006
  • The conventional discrete circuit for ABS/TCS system was examined and the problems of the system were analyzed by computer simulation. In order to improve the performance of ABS/TCS system, interface IC which has error compensation, comparator and under voltage lock-out circuit was designed and their electrical characteristics were investigated. The voltage regulator was included to compensate the temperature variation in the temperature range from $-20^{\circ}C$ to $120^{\circ}C$ for automobile environment. ABS and brake signal were separated using the duty factor of same frequency or different frequencies. UVLO(Under Voltage Lock-Out) circuit and constant current circuit were applied for the elimination of noise, and protection circuit was applied to cut the excess current off. Layout for IC fabrication was designed to enhance the electrical performance of ABS/TCS system. Layout was consisted of 11 masks, arrayed effectively 8 pads to reduce the current loss. We can see that the result of layout simulation was better than the result of bread board.

  • PDF