• Title/Summary/Keyword: Discrete Model

Search Result 2,032, Processing Time 0.037 seconds

Dynamic Instability and Multi-step Taylor Series Analysis for Space Truss System under Step Excitation (스텝 하중을 받는 공간 트러스 시스템의 멀티스텝 테일러 급수 해석과 동적 불안정)

  • Lee, Seung-Jae;Shon, Su-Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.289-299
    • /
    • 2012
  • The goal of this paper is to apply the multi-step Taylor method to a space truss, a non-linear discrete dynamic system, and analyze the non-linear dynamic response and unstable behavior of the structures. The accurate solution based on an analytical approach is needed to deal with the inverse problem, or the dynamic instability of a space truss, because the governing equation has geometrical non-linearity. Therefore, the governing motion equations of the space truss were formulated by considering non-linearity, where an accurate analytical solution could be obtained using the Taylor method. To verify the accuracy of the applied method, an SDOF model was adopted, and the analysis using the Taylor method was compared with the result of the 4th order Runge-Kutta method. Moreover, the dynamic instability and buckling characteristics of the adopted model under step excitation was investigated. The result of the comparison between the two methods of analysis was well matched, and the investigation shows that the dynamic response and the attractors in the phase space can also delineate dynamic snapping under step excitation, and damping affects the displacement of the truss. The analysis shows that dynamic buckling occurs at approximately 77% and 83% of the static buckling in the undamped and damped systems, respectively.

Alternative Evaluation Model for Tower Crane Operation Plan in Modular Construction - Focusing on Modular Unit Installation and Finishing works - (모듈러 건축 타워크레인 운용 계획의 대안 평가 모델 - 유닛 설치 및 마감공사를 중심으로 -)

  • Kim, Joo Ho;Park, Moonseo;Lee, Hyun-Soo;Hyun, Hosang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.50-60
    • /
    • 2018
  • Recently, modular construction method has been widely applied to projects with repetitive processes including dormitory, the residential facility, and the hotel construction due to reduced labor input and shortened construction schedule. Generally, about 40% of total on-site construction cost excluding unit installation cost, is put on exterior finishing work, and thus management of finishing work is deemed important in maintaining the targeted schedule and cost. Since limited equipment is shared so that subsequent activities are not affected while carrying out on-site installation and finishing work, lifting plan becomes more important for modular projects with greater portion of finishing work load. In this regard, tower crane operation plan may take the form of a single cycle or multiple cycles in which equipment efficiency can be affected. However, difficulties exist in evaluating alternatives to tower crane operation plans supporting unit installation and finishing work. Therefore, this study aims to evaluate the alternative of tower crane operation method according to the cyclic period setting in modular building site to determine the effect on T/C uptime and process by parameterizing lifting time for unit and exterior finishing material, lift cycle for unit and exterior finishing material and time required for finishing work. Accordingly, this study develops a simulation model that can increase the tower crane efficiency by controlling the work speed. An academic contribution of this study is to suggest a resource leveling method applying the concept of lifting cycle, and further is expected to be managerially used as a basis for an alternative evaluation of equipment plan.

The Spatial Distribution Characteristics and Determinants of Strong Small Farm: Focusing on Apples (강소농의 공간적 분포특성과 결정요인 분석 -사과를 중심으로-)

  • Kim, Hyun Joong;Lee, Seong Woo
    • Journal of Agricultural Extension & Community Development
    • /
    • v.19 no.4
    • /
    • pp.961-987
    • /
    • 2012
  • The present study is to investigate the characteristics and determinants of spatial distribution of strong small farm by defining the term, strong small farm (SSF) extracting the SSF households data dealing with apples, from 2010 Census of Agriculture, Forestry and Fisheries, Korea. Spatial distribution and concentration of SSF are analyzed based on spatial clustering techniques. We construct discrete dependent variables on strong and non-strong small farms and then analyze the determinants of the SSFs using probit model, with independent variables including population and economic characteristics and management characteristics. As of 2010, the apple SSFs, 1,529 households in total, are geographically concentrated in Gyeonsangbuk-do according to the analysis results. The determinants of SSF are similar to those of farms' earnings. When located in the apple producing area, and participating in producers organization while selling products directly, the farm is highly likely an SSF. The findings and results of the present study are expected to provide fundamental information helpful for preparing and implementing policies for SSFs in that the present study investigates the characteristics of SSF, which is a prerequisite step for SSF-related policies.

A study on the connected-digit recognition using MLP-VQ and Weighted DHMM (MLP-VQ와 가중 DHMM을 이용한 연결 숫자음 인식에 관한 연구)

  • Chung, Kwang-Woo;Hong, Kwang-Seok
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.8
    • /
    • pp.96-105
    • /
    • 1998
  • The aim of this paper is to propose the method of WDHMM(Weighted DHMM), using the MLP-VQ for the improvement of speaker-independent connect-digit recognition system. MLP neural-network output distribution shows a probability distribution that presents the degree of similarity between each pattern by the non-linear mapping among the input patterns and learning patterns. MLP-VQ is proposed in this paper. It generates codewords by using the output node index which can reach the highest level within MLP neural-network output distribution. Different from the old VQ, the true characteristics of this new MLP-VQ lie in that the degree of similarity between present input patterns and each learned class pattern could be reflected for the recognition model. WDHMM is also proposed. It can use the MLP neural-network output distribution as the way of weighing the symbol generation probability of DHMMs. This newly-suggested method could shorten the time of HMM parameter estimation and recognition. The reason is that it is not necessary to regard symbol generation probability as multi-dimensional normal distribution, as opposed to the old SCHMM. This could also improve the recognition ability by 14.7% higher than DHMM, owing to the increase of small caculation amount. Because it can reflect phone class relations to the recognition model. The result of my research shows that speaker-independent connected-digit recognition, using MLP-VQ and WDHMM, is 84.22%.

  • PDF

Program Design and Implementation for Efficient Application of Heterogeneous Spatial Data Using GMLJP2 Image Compression Technique (GMLJP2 영상압축 기술을 이용한 다양한 공간자료의 효율적인 활용을 위한 프로그램 설계 및 구현)

  • Kim, Yoon-Hyung;Yom, Jae-Hong;Lee, Dong-Cheon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.379-387
    • /
    • 2006
  • The real world is spatially modelled conceptually either as discrete objects or earth surface. The generated data models are then usually represented as vector and raster respectively. Although there are limited cases where only one data model is sufficient to solve the spatial problem at hand, it is now generally accepted that GIS should be able to handle various types of data model. Recent advances in spatial technology introduced even more variety of heterogeneous data models and the need is ever growing to handle and manage efficiently these large variety of spatial data. The OGC (Open GIS Consortium), an international organization pursuing standardization in the geospatial industry. recently introduced the GMLJP2 (Geographic Mark-Up Language JP2) format which enables store and handle heterogeneous spatial data. The GMLJP2 format, which is based on the JP2 format which is an abbreviation for JPEG2000 wavelet image compression format, takes advantage of the versatility of the GML capabilities to add extra data on top of the compressed image. This study takes a close look into the GMLJP2 format to analyse and exploit its potential to handle and mange hetergeneous spatial data. Aerial image, digital map and LIDAR data were successfully transformed end archived into a single GMLJP2 file. A simple viewing program was made to view the heterogeneous spatial data from this single file.

Numerical simulation of groundwater flow in LILW Repository site:I. Groundwater flow modeling (중.저준위 방사성폐기물 처분 부지의 지하수 유동에 대한 수치 모사: 1. 지하수 유동 모델링)

  • Park, Kyung-Woo;Ji, Sung-Hoon;Kim, Chun-Soo;Kim, Kyung-Su;Kim, Ji-Yeon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.6 no.4
    • /
    • pp.265-282
    • /
    • 2008
  • Based on the site characterization works in a low and intermediate level waste(LILW) repository site, the numerical simulations for groundwater flow were carried out in order to understand the groundwater flow system of repository site. To accomplish the groundwater flow modeling in the repository site, the discrete fracture network(DFN) model was constructed using the characteristics of fracture zones and background fractures. At result, the total 10 different hydraulic conductivity(K) fields were obtained from DFN model stochastically and K distributions of constructed mesh were inputted into the 10 cases of groundwater flow simulations in FEFLOW. From the total 10 numerical simulation results, the simulated groundwater levels were strongly governed by topography and the groundwater fluxes were governed by locally existed high permeable fracture zones in repository depth. Especially, the groundwater table was predicted to have several tens meters below the groundwater table compared with the undisturbed condition around disposal silo after construction of underground facilities. After closure of disposal facilities, the groundwater level would be almost recovered within 1 year and have a tendency to keep a steady state of groundwater level in 2 year.

  • PDF

Groundwater Flow Analysis around Hydraulic Excavation Damaged Zone (수리적 굴착손상영역에서의 지하수유동 특성에 관한 연구)

  • Park, Jong-Sung;Ryu, Dong-Woo;Ryu, Chang-Ha;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.109-118
    • /
    • 2007
  • The excavation damaged zone (EDZ) is an area around an excavation where in situ rock mass properties, stress condition. displacement. groundwater flow conditions have been altered due to the excavation. Various studies have been carried out on EDZ, but most studies have been focused on the mechanical bahavior of EDZ by in situ experiment. Even though the EDZ could potentially form a high permeable pathway of groundwater flow, only a few studies were performed on the analysis of groundwater flow in EDZ. In this study, the' hydraulic EDZ' was defined as the rock Lone adjacent to the excavation where the hydraulic aperture has been changed due to the excavation. And hydraulic EDZ (hydraulic aperture changed zone) estimated by two-dimensional DEM program was considered in three-dimensional DFN model. From this approach the groundwater flow characteristics corresponding to hydraulic aperture change were examined. Together. a parametric study was performed to examine the boundary conditions that frequently used in DFN analysis such as constant head or constant flux condition. According to the numerical analysis, hydraulic aperture change induced by the hydraulic-mechanical interaction becomes one of the most important factors Influencing the hydraulic behavior of jointed rock masses. And also from this study, we suggest the proper boundary condition in three-dimensional DFN model.

VOT Derivation for Different Trip Purposes, Travel Modes and Testing of Their Significance (통행목적별 수단별 통행시간가치도출 및 유의성 검정)

  • Kim, Hyeon;Oh, Se-Chang;Choi, Gi-Ju
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.1
    • /
    • pp.113-129
    • /
    • 1999
  • It is widely recognized that the value of travel time (VOT) plays an important role both in choosing the transportation alternatives on an individual level, and in analyzing and evaluating transportation plans and other public policy makings on a collective level. There is, however, a great deal of difficulties to correctly estimate the VOT. In addition, although there are lots of methods to estimate the VOT so for, not many recommendations have been presented to reflect the localities associated with the VOT derivation in Korea. This study aims at deriving the VOT for different trip purposes and travel modes with their significances tested. To accomplish this purposes, a logit-based travel mode choice model based on revealed preference (RP) data has been formulated, calibrated using the discrete choice model of LIMDEP package for various trip purpose models. For each trip purpose and travel mode, the VOT has been calculated along with the significance testing of the derived VOTs. From the results given in this research, the VOTs for different purposes and modes are identified different, and they are statistically significant. The updated results here in this paper may be a yardstick in evaluating the transportation plans and policies by providing more detailed VOT information for different categories, especially in urban context.

  • PDF

Setting limits for water use in the Wairarapa Valley, New Zealand

  • Mike, Thompson
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.227-227
    • /
    • 2015
  • The Wairarapa Valley occupies a predominantly rural area in the lower North Island of New Zealand. It supports a mix of intensive farming (dairy), dry stock farming (sheep and beef cattle) and horticulture (including wine grapes). The valley floor is traversed by the Ruamahanga River, the largest river in the Wellington region with a total catchment area of 3,430 km2. Environmental, cultural and recreational values associated with this Ruamahanga River are very high. The alluvial gravel and sand aquifers of the Wairarapa Valley, support productive groundwater aquifers at depths of up to 100 metres below ground while the Ruamahanga River and its tributaries present a further source of water for users. Water is allocated to users via resource consents by Greater Wellington Regional Council (GWRC). With intensifying land use, demand from the surface and groundwater resources of the Wairarapa Valley has increased substantially in recent times and careful management is needed to ensure values are maintained. This paper describes the approach being taken to manage water resources in the Wairarapa Valley and redefine appropriate limits of sustainable water use. There are three key parts: Quantifying the groundwater resource. A FEFLOW numerical groundwater flow model was developed by GWRC. This modelling phase provided a much improved understanding of aquifer recharge and abstraction processes. It also began to reveal the extent of hydraulic connection between aquifer and river systems and the importance of moving towards an integrated (conjunctive) approach to allocating water. Development of a conjunctive management framework. The FEFLOW model was used to quantify the stream flow depletion impacts of a range of groundwater abstraction scenarios. From this, three abstraction categories (A, B and C) that describe diminishing degrees of hydraulic connection between ground and surface water resources were mapped in 3 dimensions across the Valley. Interim allocation limits have been defined for each of 17 discrete management units within the valley based on both local scale aquifer recharge and stream flow depletion criteria but also cumulative impacts at the valley-wide scale. These allocation limits are to be further refined into agreed final limits through a community-led decision making process. Community involvement in the limit setting process. Historically in New Zealand, limits for sustainable resource use have been established primarily on the basis of 'hard science' and the decision making process has been driven by regional councils. Community involvement in limit setting processes has been through consultation rather than active participation. Recent legislation in the form of a National Policy Statement on Freshwater Management (2011) is reforming this approach. In particular, collaborative consensus-based decision making with active engagement from stakeholders is now expected. With this in mind, a committee of Wairarapa local people with a wide range of backgrounds was established in 2014. The role of this committee is to make final recommendations about resource use limits (including allocation of water) that reflect the aspirations of the communities they represent. To assist the committee in taking a holistic view it is intended that the existing numerical groundwater flow models will be coupled with with surface flow, contaminant transport, biological and economic models. This will provide the basis for assessing the likely outcomes of a range of future land use and resource limit scenarios.

  • PDF

Review on Discontinuum-based Coupled Hydro-Mechanical Analyses for Modelling a Deep Geological Repository for High-Level Radioactive Waste (고준위방사성폐기물 심층처분장 모델링을 위한 불연속체 기반 수리-역학 복합거동 해석기법 현황 분석)

  • Kwon, Saeha;Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.309-332
    • /
    • 2021
  • Natural barrier systems surrounding the geological repository for the high-level radioactive waste should guarantee the hydraulic performance for preventing or delaying the leakage of radionuclide. In the case of the behavior of a crystalline rock, the hydraulic performance tends to be decided by the existence of discontinuities, so the coupled hydro-mechanical(HM) processes on the discontinuities should be characterized. The discontinuum modelling can describe the complicated behavior of discontinuities including creation, propagation, deformation and slip, so it is appropriate to model the behavior of a crystalline rock. This paper investigated the coupled HM processes in discontinuum modelling such as UDEC, 3DEC, PFC, DDA, FRACOD and TOUGH-UDEC. Block-based discontinuum methods tend to describe the HM processes based on the fluid flow through the discontinuities, and some methods are combined with another numerical tool specialized in hydraulic analysis. Particle-based discontinuum modelling describes the overall HM processes based on the fluid flow among the particles. The discontinuum methods that are currently available have limitations: exclusive simulations for two-dimension, low hydraulic simulation efficiency, fracture-dominated fluid flow and simplified hydraulic analysis, so it could be improper to the modelling the geological repository. Based on the concepts of various discontinuum modelling compiled in this paper, the advanced numerical tools for describing the accurate coupled HM processes of the deep geological repository should be developed.