• Title/Summary/Keyword: Discrete Cosine Transform

Search Result 437, Processing Time 0.026 seconds

All Phase Discrete Sine Biorthogonal Transform and Its Application in JPEG-like Image Coding Using GPU

  • Shan, Rongyang;Zhou, Xiao;Wang, Chengyou;Jiang, Baochen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.9
    • /
    • pp.4467-4486
    • /
    • 2016
  • Discrete cosine transform (DCT) based JPEG standard significantly improves the coding efficiency of image compression, but it is unacceptable event in serious blocking artifacts at low bit rate and low efficiency of high-definition image. In the light of all phase digital filtering theory, this paper proposes a novel transform based on discrete sine transform (DST), which is called all phase discrete sine biorthogonal transform (APDSBT). Applying APDSBT to JPEG scheme, the blocking artifacts are reduced significantly. The reconstructed image of APDSBT-JPEG is better than that of DCT-JPEG in terms of objective quality and subjective effect. For improving the efficiency of JPEG coding, the structure of JPEG is analyzed. We analyze key factors in design and evaluation of JPEG compression on the massive parallel graphics processing units (GPUs) using the compute unified device architecture (CUDA) programming model. Experimental results show that the maximum speedup ratio of parallel algorithm of APDSBT-JPEG can reach more than 100 times with a very low version GPU. Some new parallel strategies are illustrated in this paper for improving the performance of parallel algorithm. With the optimal strategy, the efficiency can be improved over 10%.

A Dynamically Segmented DCT Technique for Grid Artifact Suppression in X-ray Images (X-ray 영상에서 그리드 아티팩트 개선을 위한 동적 분할 기반 DCT 기법)

  • Kim, Hyunggue;Jung, Joongeun;Lee, Jihyun;Park, Joonhyuk;Seo, Jisu;Kim, Hojoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.4
    • /
    • pp.171-178
    • /
    • 2019
  • The use of anti-scatter grids in radiographic imaging has the advantage of preventing the image distortion caused by scattered radiation. However, it carries the side effect of leaving artifacts in the X-ray image. In this paper, we propose a grid line suppression technique using discrete cosine transform(DCT). In X-ray images, the grid lines have different characteristics depending on the shape of the object and the area of the image. To solve this problem, we adopt the DCT transform based on a dynamic segmentation, and propose a filter transfer function for each individual segment. An algorithm for detecting the band of grid lines in frequency domain and a band stop filter(BSF) with a filter transfer function of a combination of Kaiser window and Butterworth filter have been proposed. To solve the blocking effects, we present a method to determine the pixel values using multiple structured images. The validity of the proposed theory has been evaluated from the experimental results using 140 X-ray images.

Inter Coding using DST-based Interpolation Filter (DST 기반 보간 필터를 이용한 인터 코딩)

  • Kim, MyungJun;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.321-326
    • /
    • 2017
  • High Efficiency Video Coding (HEVC) adopted the Discrete Cosine Transform-II (DCT-II) based interpolation filter to improve coding efficiency in motion compensation and estimation. In HEVC, the interpolation filters based on the DCT-II are composed of 8-point for half-pixel and 7-point for 1/4-pixel and 3/4-pixel. In this paper, a DST-VII based interpolation filter is used improve motion compensation and estimation. The experimental results which applied the DST-VII interpolation filter are presented. They show the 0.45% of average bitrate reduction in Random Access configuration and 0.5% of average bitrate reduction in Low Delay B configuration, respectively.

Efficient Variable Dimension Quantization of Harmonic Magnitude (효율적인 가변차원 하모닉 크기 양자화기법)

  • 신경진;이인성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.47-54
    • /
    • 2001
  • In this paper, we present a variable dimension vector quantization for spectral magnitudes. Espectially, spectral magnitudes of the Harmonic coder, need variable dimension quantizer because those are not fixed dimension. So, this paper present efficient quantization methods. These methods use variable Discrete Cosine Transform(DCT) for spectral magnitude parameters and NSTVQ which is combined odd/even, split and multi-stage structure, proposed quantization methods use Spectral Distortion(SD) for performance measure. Consequently, Multi-Stage Nonsquare Transform Vector Quantization(MSNSTVQ) is the best in performance measure.

  • PDF

Active Noise Control Using Wavelet Transform Domain Least Mean Square (웨이블릿 변환역 최소평균자승법을 이용한 능동 소음 제어)

  • Kim, Doh-Hyoung;Park, Young-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.269-273
    • /
    • 2000
  • This paper describes Active Noise Control (ANC) using Discrete Wavelet Transform (DWT) Domain Least Mean Square (LMS) Method. DWT-LMS is one of the transform domain input decorrelation LMS and improves the convergence speed of adaptive filter especially when the input signal is highly correlated. Conventional transform domain LMS's use Discrete Cosine Transform (DCT) because it offers linear band signal decomposition and fast transform algorithm. Wavelet transform can project the input signal into the several octave band subspace and offers more efficient sliding fast transform algorithm. In this paper, we propose Wavelet transform domain LMS algorithm and shows its performance is similar to DCT LMS in some cases using ANC simulation.

  • PDF

Optimized Integer Cosine Transform (최적화 정수형 여현 변환)

  • 이종하;김혜숙;송인준;곽훈성
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1207-1214
    • /
    • 1995
  • We present an optimized integer cosine transform(OICT) as an alternative approach to the conventional discrete cosine transform(DCT), and its fast computational algorithm. In the actual implementation of the OICT, we have used the techniques similar to those of the orthogonal integer transform(OIT). The normalization factors are approximated to single one while keeping the reconstruction error at the best tolerable level. By obtaining a single normalization factor, both forward and inverse transform are performed using only the integers. However, there are so many sets of integers that are selected in the above manner, the best OICT matrix obtained through value minimizing the Hibert-Schmidt norm and achieving fast computational algorithm. Using matrix decomposing, a fast algorithm for efficient computation of the order-8 OICT is developed, which is minimized to 20 integer multiplications. This enables us to implement a high performance 2-D DCT processor by replacing the floating point operations by the integer number operations. We have also run the simulation to test the performance of the order-8 OICT with the transform efficiency, maximum reducible bits, and mean square error for the Wiener filter. When the results are compared to those of the DCT and OIT, the OICT has out-performed them all. Furthermore, when the conventional DCT coefficients are reduced to 7-bit as those of the OICT, the resulting reconstructed images were critically impaired losing the orthogonal property of the original DCT. However, the 7-bit OICT maintains a zero mean square reconstruction error.

  • PDF

Digital-Carrier Multi-Band User Codes for Baseband UWB Multiple Access

  • Yang, Liuqing;Giannakis, Georgios-B.
    • Journal of Communications and Networks
    • /
    • v.5 no.4
    • /
    • pp.374-385
    • /
    • 2003
  • The growing interest towards ultra-wideband (UWB) communications stems from its unique features such as baseband operation, ample multipath diversity, and the potential of enhanced user capacity. But since UWB has to overlay existing narrowband systems, multiple access has to be achieved in the presence of narrowband interference (NBI). However, existing baseband spreading codes for UWB multiple access are not flexible in handling NBI. In this paper, we introduce two novel spreading codes that not only enable baseband UWB multiple access, but also facilitate flexible NBI cancellation. We construct our codes using a single carrier or multiple carriers (SC or MC), which can be implemented with standard discrete-cosine transform (DCT) circuits. With our SC/MC codes, NBI can be avoided by simply nulling undesired digital carriers. Being digital, these SC/MC codes give rise to multiband UWB systems, without invoking analog carriers. In addition, our SC/MC codes enable full multipath diversity, and maximum coding gains. Equally attractive is their capability to reduce the number of interfering users, with simple matched filter operations. Comprehensive simulations are also carried out to corroborate our analysis.