• 제목/요약/키워드: Discrete Approximation

검색결과 247건 처리시간 0.024초

PARAMETRIC INVESTIGATIONS ON THE DOUBLE DIFFUSIVE CONVECTION IN TRIANGULAR CAVITY

  • Kwon, SunJoo;Oh, SeYoung;Yun, Jae Heon;Chung, Sei-Young
    • 충청수학회지
    • /
    • 제20권4호
    • /
    • pp.419-432
    • /
    • 2007
  • Double-diffusive convection inside a triangular porous cavity is studied numerically. Galerkin finite element method is adopted to derive the discrete form of the governing differential equations. The first-order backward Euler scheme is used for temporal discretization with the second-order Adams-Bashforth scheme for the convection terms in the energy and species conservation equations. The Boussinesq-Oberbeck approximation is used to calculate the density dependence on the temperature and concentration fields. A parametric study is performed with the Lewis number, the Rayleigh number, the buoyancy ratio, and the shape of the triangle. The effect of gravity orientation is considered also. Results obtained include the flow, temperature, and concentration fields. The differences induced by varying physical parameters are analyzed and discussed. It is found that the heat transfer rate is sensitive to the shape of the triangles. For the given geometries, buoyancy ratio and Rayleigh numbers are the dominating parameters controlling the heat transfer.

  • PDF

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

실시간 2차원 학습 신경망을 이용한 전기.유압 서보시스템의 추적제어 (Tracking Control of a Electro-hydraulic Servo System Using 2-Dimensional Real-Time Iterative Learning Algorithm)

  • 곽동훈;조규승;정봉호;이진걸
    • 제어로봇시스템학회논문지
    • /
    • 제9권6호
    • /
    • pp.435-441
    • /
    • 2003
  • This paper addresses that an approximation and tracking control of realtime recurrent neural networks(RTRN) using two-dimensional iterative teaming algorithm for an electro-hydraulic servo system. Two dimensional learning rule is driven in the discrete system which consists of nonlinear output fuction and linear input. In order to control the trajectory of position, two RTRN with the same network architecture were used. Simulation results show that two RTRN using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two identical RTRN was very effective to trajectory tracking of the electro-hydraulic servo system.

이산 웨이블렛 변환을 이용한 직렬 아크고장 신호 검출 방법 분석 (Analysis of Detection Method for Series Arc Fault Signal by using DWT)

  • 방선배;김종민;박종연;정영식
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.362-368
    • /
    • 2009
  • Electrical fires have been occurred continuously in spite of installing ELB. Therefore the concern with the electrical arc-fault that cause the fire has growing. This paper measured series arc fault currents by the method of arc generator test in UL standard 1699. The used analysis methods in this paper are three different ways using DWT(discrete wavelet transform) those are frequently used for the arc fault current signal analysis. The arc fault detection probability is 100 % by method using noise-energy/shoulder-duration ratio of approximation coefficient. As these results, the variation of noise-energy and shoulder-duration ratio of approximation coefficient are founded important factors for the analysis of arc fault.

거리계전 알고리즘별 특성 비교 (Comparison of the characteristics of Distance Relaying Algorithms)

  • 강상희;이승재;노재근;양언필;정종진
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.34-37
    • /
    • 2001
  • This paper presents some results after comparing the characteristics of 3 algorithms, which are discrete Fourier transform based algorithm, least square method, and modified differential approximation algorithm, used at most distance relays all over the world. In case of the DFT based distance relaying algorithm, the length of the algorithm data window and the cut-off frequency of an anti-aliasing low-pass filter adopted are fixed. On the other hand, the data window lengths are changed according to the corresponding low-pass filters in the rest two algorithms. In series of tests, the apparent impedance estimated by the modified differential approximation algorithm shows faster and more stable characteristics of convergence than the two others.

  • PDF

임펄스응답 데이타의 펄스전달함수의 근사 (Approximation of Pulse Transfer Function of Impulse Response Data)

  • 이동철;배종일;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.683-685
    • /
    • 1999
  • As a method of obtaining pulse transfer function. transfer function of discrete-time from input-output data, there are method of obtaining unknown parameter of pulse transfer function from estimated impulse response before(1-3). There is no need to approximate to several meanings because of not being established algebraical relations between impulse response for estimation error and parameter of transfer function exactly. In this paper, I inquire the method[4] of obtaining the optimal pulse transfer function as a meaning of Hankel norm approximation from impulse response data and examine estimated property as computer simulation from this method.

  • PDF

입자복합재료 내부의 탄성파 분산에 관한 이론적 연구 (A Theoretical Study on the Dispersion of Elastic Waves in Particulate Composites)

  • 김진연;이정권
    • 대한기계학회논문집
    • /
    • 제18권7호
    • /
    • pp.1697-1704
    • /
    • 1994
  • Elastic wave propagation in discrete random medium studies to predict dynamic effective properties of composite materials containing spherical inclusions. A self-consistent method is proposed which is analogous to the well-known coherent potential approximation. Three conditions that must be satisfied by two effective elastic moduli and effective density are derived for the time without limit of frequency. The derived self-consistency conditions have the physical meaning that the scattering of coherent wave by the constituents in effective medium is vanished on the average. The frequency-dependent complex effective wave speed and coherent attenuation can be obtained by solving the derived self-consistency conditions numerically. The wave speed and attenuation obtained from present theory are shown to be in the better agreements with previous experimental observations than the previous theory.

과도 선형 동탄성 문제의 시간영역 유한요소해석 (A Time-Domain Finite Element Formulation for Transient Dynamic Linear Elasticity)

  • 심우진;이성희
    • 대한기계학회논문집A
    • /
    • 제25권4호
    • /
    • pp.574-581
    • /
    • 2001
  • Transient linear elastodynamic problems are numerically analyzed in a time-domain by the Finite Element Method, for which the variational formulation based upon the equations of motion in convolution integral is newly derived. This formulation is implicit and does not include the time derivative terms so that the computation procedure is simple and less assumptions are required comparing to the conventional time-domain dynamic numerical algorithms, being able to get the improved numerical accuracy and stability. That formulation is expanded using the semi-discrete approximation to obtain the finite element equations. In the temporal approximation, the time axis is divided equally and constant and linear time variations are assumed in those intervals. It is found that unconditionally stable numerical results are obtained in case of the constant time variation. Some numerical examples are given to show the versatility of the presented formulation.

2차원 반복 학습 신경망을 이용한 전기.유압 서보시스템의 제어 (Control of an Electro-hydraulic Servosystem Using Neural Network with 2-Dimensional Iterative Learning Rule)

  • 곽동훈;이진걸
    • 유공압시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2004
  • This paper addresses an approximation and tracking control of recurrent neural networks(RNN) using two-dimensional iterative learning algorithm for an electro-hydraulic servo system. And two dimensional learning rule is driven in the discrete system which consists of nonlinear output function and linear input. In order to control the trajectory of position, two RNN's with the same network architecture were used. Simulation results show that two RNN's using 2-D learning algorithm are able to approximate the plant output and desired trajectory to a very high degree of a accuracy respectively and the control algorithm using two same RNN was very effective to control trajectory tracking of electro-hydraulic servo system.

  • PDF

평면 뼈대 구조물에 적용된 최적규준 (An Optimality Criteria applied to The Plane Frames)

  • 정영식;김창규
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 가을 학술발표회 논문집
    • /
    • pp.17-24
    • /
    • 1995
  • This work proposes an optimality criteria applicable to the optimum design of plane frames. Stress constraints as well as displacement constraints are treated as behavioural constraints and thus the first order approximation of stress constraints is adopted. The design space of practical reinforced concrete frames with discrete design variables has been found to have many local minima, and thus it is desirable to find in advance the mathematical minimum, hopefully global, prior to starting to search a practical optimum design. By using the mathematical minimum as a trial design of any search algorithm, we may not full into a local minimum but apparently costly design. Therefore this work aims at establishing a mathematically rigorous method ⑴ by adopting first-order approximation of constraints, ⑵ by reducing the design space whenever minimum size restrictions become "active" and ⑶ by the of Newton-Raphson Method.

  • PDF