• Title/Summary/Keyword: Discrete Approximation

Search Result 247, Processing Time 0.03 seconds

Development of High Erosion Resistant Fe-based Alloy for Continuous Hot Dipping Line (연속용융 도금라인 용 고내침식 Fe계 합금 개발)

  • Baek, Min-Sook;Kim, Yong-Cheol;Baek, Kyeong-Cheol;Kwak, Joon-Seop;Yoon, Dong-Joo
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.3
    • /
    • pp.95-103
    • /
    • 2020
  • In this study, the material used in the hot dip galvanizing equipment was poorly corrosion-resistant, so it was performed to solve the cost and time problems caused by equipment replacement. The theoretical calculation was performed using the DV-Xα method(Discrete Variational Local-density approximation method). The alloy (STS4XX series) of the equipment currently used has a martensite phase. Therefore, the theoretical calculation was performed by applying P4 / mmm, which is a tetragonal structure. The new alloy was chosen by designing theoretical values close to existing materials. Considering elements that contribute to corrosion, most have high prices. Therefore, the design was completed by adjusting the content using only the components of the reference material in the theoretical design. The final design alloys were chosen as D6 and D9. Designed D6 and D9 were dissolved and prepared using an induction furnace. After the heat treatment process was completed, the corrosion rate of the alloys was confirmed by using the potentiodynamic polarization test. The surface of the prepared alloys were processed horizontally and then polished to # 1200 using sand paper to perform potentiodynamic polarization test. Domestic products: 4.735 mpy (mils / year), D6: 0.9166 mpy, D9: 0.3372 mpy, alloys designed than domestic products had a lower corrosion rate. Therefore, the designed alloy was expected to have better erosion resistance.

Analysis of Stress Concentration Problems Using Moving Least Squares Finite Difference Method(I) : Formulation for Solid Mechanics Problem (이동최소제곱 유한차분법을 이용한 응력집중문제 해석(I) : 고체문제의 정식화)

  • Yoon, Young-Cheol;Kim, Hyo-Jin;Kim, Dong-Jo;Liu, Wing Kam;Belytschko, Ted;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.4
    • /
    • pp.493-499
    • /
    • 2007
  • The Taylor expansion expresses a differentiable function and its coefficients provide good approximations for the given function and its derivatives. In this study, m-th order Taylor Polynomial is constructed and the coefficients are computed by the Moving Least Squares method. The coefficients are applied to the governing partial differential equation for solid problems including crack problems. The discrete system of difference equations are set up based on the concept of point collocation. The developed method effectively overcomes the shortcomings of the finite difference method which is dependent of the grid structure and has no approximation function, and the Galerkin-based meshfree method which involves time-consuming integration of weak form and differentiation of the shape function and cumbersome treatment of essential boundary.

Robust Digital Redesign for Observer-based System (관측기 기반 시스템에 대한 강인 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.3
    • /
    • pp.285-290
    • /
    • 2007
  • In this paper, we presents robust digital redesign (DR) method for observer-based linear time-invariant (LTI) system. The term of DR involves converting an analog controller into an equivalent digital one by considering two condition: state-matching and stability. The design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between interpolated linear operators to be matched. Also, by using the bilinear and inverse bilinear approximation method, we analyzed the uncertain parts of given observer-based system more precisely, When a sampling period is sufficiently small, the conversion of a analog structured uncertain system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

Dependence of Localized Surface Plasmon Properties on the Shape of Metallic Nanostructures (금속 나노 구조체의 형상에 따른 국소 표면 플라즈몬 특성)

  • Kim, Joo-Young;Cho, Kyu-Man;Lee, Taek-Sung;Kim, Won-Mok;Lee, Kyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.77-77
    • /
    • 2008
  • 금(Au)이나 은(Ag)과 같은 귀금속 물질로 형성된 금속 나노 구조체는 표면 플라즈몬 공진(Surface Plasmon Resonance, SPR) 현상과 이의 국부 환경(local environment) 변화에 대해 민감한 의존성으로 인하여 생화학적 센서로의 응용이 주목 받고 있다. 표면 플라즈몬 공진은 광 흡수와 광 산란을 수반하는데, 두 가지 특성 모두 분광학적 신호검출방식으로 센서에 응용가능하다. 이 중 광 산란을 이용하는 방식은 광원의 배경잡음 효과가 배제되기 때문에 단일 입자 검출에 유리하다. 광 흡수와 광 산란 특성은 금속 나노 구조체는 크기, 형상, 주변 매질, 물질의 선택에 따라서 영향을 받는다. 본 연구에서는 금 나노 디스크(nanodisc)의 형상에 따라서 여기 되는 표면 플라즈몬이 광 흡수와 광 산란 특성에 미치는 영향을 가시광과 근적외선 영역에 대해서 불연속 쌍극자 근사법(Discrete Dipole Approximation, DDA)을 이용하여 전사모사(simulation) 하였다. 금 나노 디스크의 형상과 플라즈몬 특성 간의 관계는 공명 파장과 산란 양자 거둠율(scattering quantum yield, $\eta$)을 이용하여 분석하였고, 센서로서의 응용을 가늠하기 위해 주변 매질의 굴절률을 조절하여 그에 따른 민감도(sensitivity )를 비교하였다. 나노 디스크의 모양이 판상에 가까워질수록 공명 파장은 적색 편이하였고 광 산란 효율과 민감도는 증가하는 현상이 나타났다. 또한, 산란 양자 거둠율은 증가하다가 완만하게 감소하는 경향이 나타났다.

  • PDF

Cable with discrete negative stiffness device and viscous damper: passive realization and general characteristics

  • Chen, Lin;Sun, Limin;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.627-643
    • /
    • 2015
  • Negative stiffness, previously emulated by active or semi-active control for cable vibration mitigation, is realized passively using a self-contained highly compressed spring, the negative stiffness device (NSD).The NSD installed in parallel with a viscous damper (VD) in the vicinity of cable anchorage, enables increment of damper deformation during cable vibrations and hence increases the attainable cable damping. Considering the small cable displacement at the damper location, even with the weakening device, the force provided by the NSD-VD assembly is approximately linear. Complex frequency analysis has thus been conducted to evaluate the damping effect of the assembly on the cable; the displacement-dependent negative stiffness is further accounted by numerical analysis, validating the accuracy of the linear approximation for practical ranges of cable and NSD configurations. The NSD is confirmed to be a practical and cost-effective solution to improve the modal damping of a cable provided by an external damper, especially for super-long cables where the damper location is particularly limited. Moreover, mathematically, a linear negative stiffness and viscous damping assembly has proven capability to represent active or semi-active control for simplified cable vibration analysis as reported in the literature, while in these studies only the assembly located near cable anchorage has been addressed. It is of considerable interest to understand the general characteristics of a cable with the assembly relieving the location restriction, since it is quite practical to have an active controller installed at arbitrary location along the cable span such as by hanging an active tuned mass damper. In this paper the cable frequency variations and damping evolutions with respect to the arbitrary assembly location are then evaluated and compared to those of a taut cable with a viscous damper at arbitrary location, and novel frequency shifts are observed. The characterized complex frequencies presented in this paper can be used for preliminary damping effect evaluation of an adaptive passive or semi-active or active device for cable vibration control.

Stability Analysis of Limit Cycles on Continuous-time Cyclic Connection Neural Networks (연속시간 모델 순환결합형 신경회로망에서의 리미트사이클의 안정성 해석)

  • Park, Cheol-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.179-184
    • /
    • 2006
  • An intuitive understanding of the dynamic pattern generation in asymmetric networks may be considered an essential component in developing models for the dynamic information processing. It has been reported that the neural network with cyclic connections generates multiple limit cycles. The dynamics of discrete time network with cyclic connections has been investigated intensively. However, the dynamics of a cyclic connection neural network in continuous-time has not been well-known due to the considerable complexity involved in its calculation. In this paper, the dynamic behavior of a continuous-time cyclic connection neural network, in which each neuron is connected only to its nearest neurons with binary synaptic weights of ${\pm}1$, has been investigated. Furthermore, the dynamics and stability of the network have been analyzed using a piece-wise linear approximation.

Effect of Transition Metal Dopant on Electronic State and Chemical Bonding of MnO2 (MnO2의 전자상태 및 화학결합에 미치는 천이금속 첨가의 효과)

  • 이동윤;김봉서;송재성;김양수
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.691-696
    • /
    • 2004
  • The electronic state and chemical bonding of $\beta$-MnO$_2$ with transition metal dopants were theoretically investigated by DV-X$_{\alpha}$ (the discrete variational X$_{\alpha}$) method, which is a sort of the first principles molecular orbital method using the Hartree-Fock-Slater approximation. The calculations were performed with a $_Mn_{14}$ MO$_{56}$ )$^{-52}$ (M = transition metals) cluster model. The electron energy level, the density of states (DOS), the overlap population, the charge density distribution, and the net charges, were calculated. The energy level diagram of MnO$_2$ shows the different band structure and electron occupancy between the up spin states and down spin states. The dopant levels decrease between the conduction band and the valence band with the increase of the atomic number of dopants. The covalency of chemical bonding was shown to increase and ionicity decreased in increasing the atomic number of dopants. Calculated results were discussed on the basis of the interaction between transition metal 3d and oxygen 2p orbital. In conclusion it is expected that when the transition metals are added to MnO$_2$ the band gap decreases and the electronic conductivity increases with the increase of the atomic number of dopants. the atomic number of dopants.

Calculation on Electronic State of $MnO_2$ Oxide Semiconductor with other initial spin conditions by First Principle Molecular Orbital Method (제1원리 분자궤도계산법에 의한 초기 spin 조건에 따른 $MnO_2$ 반도체의 전자상태 변화 계산)

  • Lee, Dong-Yoon;Kim, Bong-Seo;Song, Jae-Sung;Kim, Hyun-Sik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.148-151
    • /
    • 2003
  • The spin density of ${\beta}-MnO_2$ structure was theoretically investigated by $DV-X_{\alpha}$ (the discrete variation $X{\alpha}$) method, which is a sort of the first principle molecular orbital method using Hatre-Fock-Slater approximation. The used cluster model was $[Mn_{14}O_{56}]^{-52}$. The ${\beta}-MnO_2$ is a paramagnetic oxide semiconductor material having the energy band gap of 0.18 eV and an 3 loan-pair electrons in the 3d orbital of an cation. This material exhibits spin-only magnetism and has the magnetic ordering temperature of 94 K. Below this temperature its magnetism appears as antiferromagnetism. The calculations of electronic state showed that if the initial spin condition of input parameters changed, the magnetic state changed from paramagnetic to antiferromagnetic. When d orbital of all Mn atoms in cluster had same initial spin state as only up spin, paramagnetic spin density distribution appeared by the calculation. On the other way, d orbital had alternately changed spin state along special direction the resulted spin distribution showed antiferromagnetism.

  • PDF

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

Comparison of Scattered Light of ex vivo Mouse Neutrophils by Different Wavelength Laser Irradiation (2개의 레이저 파장에 따른 마우스 호중구의 산란광 비교 연구)

  • Park, Jae-Sung;Son, Min-Ji;Hwang, Chang-Soon;Lee, Ho
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.365-378
    • /
    • 2022
  • Complete blood cell count(CBC) is a technique that counts leukocytes for each type of blood cell being analyzed. The principle is that laser is incident to ex vivo flowing leukocytes in a microcapillary tube and scattered light occurs by laser and leukocytes. By collecting the scattered light, we can count the types of cells because different cells generate different light-scattering patterns. However, the technique has an intrinsic limitation, scattering pattern is shown in a wide range region in the resulting, which makes it difficult to accurate analyze and use fluorescent dyes. To overcome this limitation, a new design of CBC with a dual laser, which irradiates with orthogonal angles for collecting quad-scattering information was proposed. Before development, the scattering difference depending on wavelength must be investigated to only catch up to the scattered signal by angles. Some studies, which focused on simple particles, have been conducted to theoretically and experimentally investigate different scatterings by wavelength. In this study, we propose an optical system for measuring scattered light and investigate a complex particle. As a result, the green laser made strong scattering signals in both the forward and side direction: 10% and 30%, respectively.