• Title/Summary/Keyword: Discharge of Rainfall Runoff

Search Result 348, Processing Time 0.032 seconds

An Analysis on Hydrologic Characteristics of Design Rainfall for the Design of Hydraulic Structure (수공구조물 설계를 위한 설계강우의 수문학적 특성 분석)

  • Lee, Jeong-Sik;Lee, Jae-Jun;Park, Jong-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.1
    • /
    • pp.67-80
    • /
    • 2001
  • This study is to propose temporal pattern of design rainfall which causes maximum peak discharge and to analyze the variation in peak discharge according to design rainfall durations. In this study, the Mononobe, the Yen and Chow triangular, the Huff's 4th quartiles and the Keifer and Chu methods are applied to estimate the proper temporal pattern of design rainfall and three rainfall-runoff models such as SCS, Nakayasu, and Clark methods are used to estimate the runoff hydrograph. And to examine the variability of peak discharge, the hydrologic characteristics from the rainfall-runoff models to which uniform rainfall intensity is applied are used as the standard values. The type of temporal pattern of design rainfall which causes maximum peak discharge in both of the watersheds and the rainfall-runoff models has resulted in Yen and Chow distribution method with the dimensionless vague of 0.75. On the basis of determined temporal pattern, the examination of the variability of peak discharge according to design rainfall durations shows that design rainfall duration varies greatly with the types of probable intensity formula, and the variation of peak discharge is more affected by the types of probable intensity formula and I-D-F currie than rainfall-runoff models.

  • PDF

Comparison of Urban Runoff Models for Interior Drainage in Urban Basin (도시유역의 내수배제를 위한 도시유출모델의 비교)

  • Choi, Yun-Young;Lee, Yeong-Hwal;Jee, Hong-Kee
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.3
    • /
    • pp.251-259
    • /
    • 2000
  • In this study, the urban runoff models, ILLUDAS model and SWMM, are analyzed the probable peak discharge and discharge using rainfall distribution by Huff's method at Bum-uh chun area in Taegu city. The probability rainfall and intensity is analyzed by Pearson-III type. The rainfall duration, 90 minutes, is determined by the critical duration computed the maximun peak discharge for some rainfall durations. The peak discharge according to Huff's rainfall distribution types compute in order of type 3, type 4, type2, and type 1, so Huff's 3 type is selected as an adequate rainfall distribution in Bum-uh chun basin. ILLUDAS model and SWMM are shown as good models in Bum-uh chun, but SWMM is computed higher peak discharge than ILLUDAS model, so SWMM is shown as the adequate urban runoff model for the design of interior drainage in urban basin.

  • PDF

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Tanaka, Yukiya;Matsukura, Yukinori
    • The Korean Journal of Quaternary Research
    • /
    • v.17 no.2
    • /
    • pp.79-84
    • /
    • 2003
  • This study revealed the differences in runoff processes of granite drainage basins in Korea and Mongolia by hydrological measurements in the field. The experimental drainage basins are chosen in Korea (K-basin) and Mongolia (M-basin). Occurrence of intermittent flow in K-basin possibly implies that very quick discharge dominates. The very high runoff coefficient implies that most of effective rainfall quickly discharge by throughflow or pipeflow. The Hortonian overlandflow is thought to almost not occur because of high infiltration capacity originated by coarse grain sized soils of K- basin. Very little baseflow and high runoff coefficient also suggest that rainfall almost does not infiltrate into bedrocks in K-basin. Flood runoff coefficient in M-basin shows less than 1 %. This means that most of rainfall infiltrates or evaporates in M-basin. Runoff characteristics of constant and gradually increasing discharge imply that most of rainfall infiltrates into joint planes of bedrock and flow out from spring very slowly. The hydrograph peaks are sharp and their recession limbs steep. Very short time flood with less than 1-hour lag time in M-basin means that overland flow occurs only associating with rainfall intensity of more than 10 mm/hr. When peak lag time shows less than 1 hour for the size of drainage area of 1 to 10 km2, Hortonian overland flow causes peak discharge (Jones, 1997). The results of electric conductivity suggest that residence time in soils or weathered mantles of M-basin is longer than that of K-basin. Qucik discharge caused by throughflow and pipeflow occurs dominantly in K-basin, whereas baseflow more dominantly occur than quick discharge in M-basin. Quick discharge caused by Hortonian overlandflow only associating with rainfall intensity of more than 10 mm/hr in M-basin.

  • PDF

Review on Application Tolerance of Unit Hydrograph for Calculating Flood Runoff Hydrograph (홍수 유출 수문곡선 산출에 단위유량도 적용 오차의 정도 검토)

  • Yoo, Ju-Hwan;Yoon, Yeo-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.346-349
    • /
    • 2010
  • In this study several unit hydrographs by rainfall storms are derived and moving averaged unit hydrograph is extracted from them based on the rainfall-runoff data in a small basin 8.5 $km^2$ wide. And peak discharges and peak times of the unit hydrographs are investigated and reviewed. And then a representative unit hydrograph of the moving averaged one is applied to the linear convolution integration for obtaining the flood discharge hydrograph and peak discharge and time of its result are researched and inspected. Variance in application of the representative unit hydrograph in a basin on assumption of linearity is appeared and this is given as a counterevidence about that the runoff response from rainfall on a basin has nonlinear characteristics. And As a result of application of derived representative unit hydrograph the errors in peak discharge and time are investigated.

  • PDF

A Study on Hydrologic Analysis and Some Effects of Urbanization on Design Flow of Urban Storm Drainage Systems (1) (도시 하수도망의 수문학적인 평가와 설계확률유량의 점대화 성향에 관한 연구(제1보))

  • 강관원;서병하;윤용남
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.27-34
    • /
    • 1981
  • The design flow of the urban strom drainage systems has been assessed largely on a basis of empirical relations between rainfall and runoff, and the rational formula has been widely used for the cities in our country. In order to estimate it more accurately, the urban runoff simulation model based on the RRl method has been developed and applied to the sample basin in this study. The rainfall hyetograph of the design stromfor the design flow has been obtained by the determination of the total rainfall and the temporal distributions of that rainfall. The total rainfall has been assessed from the empirical formula of rainfall intensity and the temporal distribution of that rainfall determined on the basis of Huff's method from the historical rainfall data of the basin. The virtual inflow hydrograph to each inlet of the basin has been constructed by computing the series of discharges in each time increment, using design strom hyetograph and time-area diagram. The actual runoff hydrograph at the basin outlet has been computed from the virtual inflow hydrographs by developing a relations between discharge and storage for the watershed. The discharge data for verification of the simulated runoff hydrograph are not available in the sample basin and so the sensitivity analysis of the simulation model has not been possible. The peak discharge for the design of drainage systems has been estimated from the computed runoff hydrograph at the basin outlet and compared to thatl obtained form the rational formula.

  • PDF

Surface Cover Application for Reduction of Runoff and Sediment Discharge from Sloping Fields (경사지 밭에서 발생하는 토양유실 저감을 위한 피복재 적용)

  • Shin, Min-Hwan;Won, Chul-Hee;Park, Woon-Ji;Choi, Young-Hun;Shin, Jae-Young;Lim, Kyoung-Jae;Choi, Joong-Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.129-136
    • /
    • 2011
  • To measure effects of surface cover on runoff and sediment discharge reduction using rainfall simulator, four(5 m${\times}$30 m scale) plot experiments were conducted in this study. Surface covers made with straw mat, Polyacrylamide (PAM), chaff, and sawdust were simulated 4 times under 31.1~44.4 mm/hr rainfall intensities. Compared with results from control plot, the time of runoff generation is delayed and outflow volume decreased with surface cover. Effects on runoff reduction of straw mat, PAM, sawdust and chaff ranged 4.7~81.5 % and runoff rate reduced by 6.5~76.1 % respectively, when compared with those from control plot. The percentage of decrease in sediment discharge were 99.7~99.8 % from straw mat+sawdust+PAM plots, 85.9~95.6 % from straw mat+PAM plots, and 98.5~99.4 % from straw mat+chaff+PAM plots. The runoff, sediment discharge, and SS concentration reduction efficiencies of the cover materials were outstanding when compared to control plot. It was analyzed that reduction of runoff and sediment discharge were mainly contributed by decrease in rainfall energy impact and flow velocity and increase of infiltration due to the surface cover materials. The results could be used as a base for the development of best management practices (BMPs) to reduce runoff, sediment discharge from sloping field.

Analysis of First Flushing Effects for the Vineyard Storm Runoff (강우시 포도밭에 대한 초기세척효과 분석)

  • Yoon, Young-Sam;Kwon, Hun-Gak;Lee, Jae-Woon;Yu, Jay-Jung;Lee, Jae-Kwan
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.977-986
    • /
    • 2011
  • This study analyzed the characteristics of stormwater runoff in the orchard areas and quantitatively estimated effluence of nonpoint source pollutants for the volume of runoff. Two target areas under vine cultivation were each $2,000m^2$ and $1,800m^2$, located in Gyeongju City. Since grape was the only crop on the target area, the characteristics of stormwater runoff at vineyard could be evaluated independently. A total of 51 rainfall events in the vineyard area during two years(2008-2009) was surveyed, and 19 of them became stormwater runoff, with rainfall ranging 16.5 - 79.7 mm and antecedent dry period of 1-13 days. The pollutant runoff loads by volume of stormwater runoff showed BOD ranging 19.5 - 45.3% in 30% of runoff volume. The average pollution discharge rate was 32.4%, indicating small first flush effect of BOD. The range of SS concentrations was 5 - 52.0% in 10% of runoff volume, showing the average 28.7% of discharge rate, about 3 times more than rainfall effluent. TOC and TN appeared to be similar to the results of BOD, the average discharge rate of 30.9% and 30.6% for TOC and TN, respectively, for 30% of stormwater runoff volume. Average discharge rate of COD and TP in the same runoff volume was 35.1% and 36%, respectively, showing comparatively high discharge ratio. As the targeted vineyard area was permeable land, the pollution load ratio against rainfall-runoff volume appeared to be 1:1, implying no strong first flush effect for all the survey items.

Spatio-temporal dependent errors of radar rainfall estimate for rainfall-runoff simulation

  • Ko, Dasang;Park, Taewoong;Lee, Taesam;Lee, Dongryul
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.164-164
    • /
    • 2016
  • Radar rainfall estimates have been widely used in calculating rainfall amount approximately and predicting flood risks. The radar rainfall estimates have a number of error sources such as beam blockage and ground clutter hinder their applications to hydrological flood forecasting. Moreover, it has been reported in paper that those errors are inter-correlated spatially and temporally. Therefore, in the current study, we tested influence about spatio-temporal errors in radar rainfall estimates. Spatio-temporal errors were simulated through a stochastic simulation model, called Multivariate Autoregressive (MAR). For runoff simulation, the Nam River basin in South Korea was used with the distributed rainfall-runoff model, Vflo. The results indicated that spatio-temporal dependent errors caused much higher variations in peak discharge than spatial dependent errors. To further investigate the effect of the magnitude of time correlation among radar errors, different magnitudes of temporal correlations were employed during the rainfall-runoff simulation. The results indicated that strong correlation caused a higher variation in peak discharge. This concluded that the effects on reducing temporal and spatial correlation must be taken in addition to correcting the biases in radar rainfall estimates. Acknowledgements This research was supported by a grant from a Strategic Research Project (Development of Flood Warning and Snowfall Estimation Platform Using Hydrological Radars), which was funded by the Korea Institute of Construction Technology.

  • PDF

Application of a Distribution Rainfall-Runoff Model on the Nakdong River Basin

  • Kim, Gwang-Seob;Sun, Mingdong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.976-976
    • /
    • 2012
  • The applicability of a distributed rainfall-runoff model for large river basin flood forecasts is analyzed by applying the model to the Nakdong River basin. The spatially explicit hydrologic model was constructed and calibrated by the several storm events. The assimilation of the large scale Nakdong River basin were conducted by calibrating the sub-basin channel outflow, dam discharge in the basin rainfall-runoff model. The applicability of automatic and semi-automatic calibration methods was analyzed for real time calibrations. Further an ensemble distributed rainfall runoff model has been developed to measure the runoff hydrograph generated for any temporally-spatially varied rainfall events, also the runoff of basin can be forecast at any location as well. The results of distributed rainfall-runoff model are very useful for flood managements on the large scale basins. That offer facile, realistic management method for the avoiding the potential flooding impacts and provide a reference for the construct and developing of flood control facilities.

  • PDF

Variations of Rainfall-Runoff Characteristics with Landuse (토지이용에 따른 강우-유출 특성 변화(농지조성 및 농어촌정비))

  • 임상준;서춘석;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.72-77
    • /
    • 2000
  • The purpose of this study were to monitor rainfall and runoff data from paddy blocks and forest areas at the Balan Experimental Watershed, and to investigate the variations of runoff characteristics with different land use. Field data showed that the total runoff from paddies and forest areas are not significantly different in volume. The peak discharge from forest areas was less than that from paddies for lighter storms, but became greater for heavier storms. The results demonstrate that paddies play an important role to reduce peak discharge from heavy storms as compared to forest.

  • PDF