• Title/Summary/Keyword: Discharge and Discharge Gas

Search Result 1,451, Processing Time 0.032 seconds

Effect of Discharge Gas on the Electrical Characteristics of the Glow Discharge Plasma for the Gas Chromatographic Detector (글로우방전 가스크로마토그라프 검출기에서 방전가스의 영향)

  • 박현미;강종성;김효진
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.480-486
    • /
    • 1995
  • The change in discharge current of a glow discharge has been shown the potential sensitive detector for gas chromatography. To investigate the effect of carrier gas on the electrical characteristics of the discharge and the peak response, the discharge pressure, gas flow rate, and discharge gap have been studied. The discharge gas included the Ar, He, and N$_{2}$. The gas flow rate has been found one of the important parameters to affect both the electrical characteristics and the peak response.

  • PDF

Glow Discharge as Detector for Gas Chromatography (글로우방전을 이용한 가스크로마토그라프 검출기의 개발)

  • 김효진;박일영;장성기;김박광;박만기
    • YAKHAK HOEJI
    • /
    • v.37 no.1
    • /
    • pp.76-83
    • /
    • 1993
  • The changes in discharge current, emission and/or oscillation frequency of the electric oscillation of a glow discharge are the potential sensitive measure of the concentration of an impurity in the argon plasma supporting gas. A single jet enhanced glow discharge has been interfaced with the gas chromatograph via 1/8" O.D. tube with a heating pad to study the changes in discharge current. To investigate the optimum operating conditions of the glow discharge system as detector for gas chromatography, pressure, gas flow rate, discharge current, distance between the anode and the cathode have been studied.

  • PDF

Influence of intermixed gas on stable townsend discharge (안정 Townsend 방전에 대한 혼입가스의 영향)

  • 하성철
    • 전기의세계
    • /
    • v.30 no.5
    • /
    • pp.306-312
    • /
    • 1981
  • The Townsend discharge domain is generally observed with stable positive characteristics in N$_{2}$ gas discharge at low pressures differently in the others, which transfer immediately to glow dischage after self-sustaining discharge starts. In this paper, the presence of the stable Townsend discharge, applied voltage-discharge current characteristics and the effect of disgased electrode surface on stable townsend discharge are studied experimentaly in N$_{2}$ gas mixed with 0.05% of No in volume. As the result of this experiment, the stable Townssend discharge is observed only in pure nitrogen with the valve of pd.geq.8[torr.cm] (p=gas pressure, d=gap spacing), but not in gas mixtures. This is considered that No gas in gas mixtures disexcites effectively the metestble state of nitrogen.

  • PDF

The effects of discharge gases in the voltage transfer curve of ac-PDP (ac-PDP의 전압전달특성에 미치는 방전가스의 영향)

  • Son, J.B.;Lee, S.H.;Kim, D.H.;Kim, Y.D.;Cho, J.S.;Park, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07e
    • /
    • pp.2233-2235
    • /
    • 1999
  • The ac plasma display panel(PDP) is a flat light-emitting gas discharge device. Discharge gases directly take effects to the discharge phenomena of ac PDP. Therefore it is necessary to understand the characteristics of the discharge gases. In this paper, we have studied the effects of discharge gases by voltage transfer curves which show the discharge characteristics of ac PDP and the change of the effective wall capacitance during a discharge which depends on lateral spreading of charge distribution and the strength of discharge. As gas pressure increases, memory margins increases. and the firing voltage of a mixed gas is lower than that of a single gas such as He gas. The minimum sustain voltage and the maximum sustain voltage or firing voltage increases with decrease in the frequency. The effective wall capacitance increases as the discharge strength that is, the gap voltage between discharge electrodes increases.

  • PDF

The Study on the Properties of He Glow discharge in a Dielectric Barrier Discharge (DBD) Model (DBD 전극구조에서의 He 가스 글로우방전 특성연구)

  • So, Soon-Youl
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.214-220
    • /
    • 2018
  • Light sources induced by gas discharge using rare gases have been widely used in the thin film deposition, the surface modification and the polymer etching. A dielectric barrier discharge (DBD) has been developed in order to consistently emit light and control the wavelength of the emission light. However, much research on the characteristics of the movement of discharge particles is required to improve the efficiency of the light lamp and the life-time of the light apparatus in detail. In this paper, we developed a He DBD discharge simulation tool and investigated the characteristics of discharge particles which were electrons, two positive ions ($He^+$, $He_2^+$) and 5 excited particles ($He^*(1S)$, $He^*(3S)$, $He^*$, $He^{**}$, $He^{***}$). The discharge currents showed the transition from pulse mode to continuous mode with the increase of power. With the accumulated charges on the barrier walls, the discharge current was rapidly increased and caused oscillation of the discharge voltage. As the gas pressure increased, $He_2^+$ and $He^*(3S)$ became the dominant activated particles. The input power was mostly consumed by electrons and $He_2^+$ ion. And the change curve showed that power consumption by electrons increased more with gas pressure than with source voltage or frequency.

Partial Discharge Phenomenon with $SF_6$ Gas Pressures in Insulation consisting of Insulation Paper and $SF_6$ Gas (SF_6 가스와 절연지의 절연계에서 가스압력에 따른 부분방전현상)

  • 선종호;김광화;박정후;조정수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.2
    • /
    • pp.65-71
    • /
    • 2001
  • This paper describes partial discharge phenomenon with SF6gas pressures in insulation consisting of insulation paper and SF6 gas. We made the specimens with SF6 gas gaps which exist between aramid papers and electrodes and calculated the electric field intensity in the these gaps. We measured the partial discharge inception voltages and the AC breakdown voltages with the test method of IEC 60060-2 and did the partial discharge degradation experiments with a constant voltage. According to gas pressures, the breakdown voltages in SF6gas gaps were calculated by Paschen's law. And these results showed the ability applying partial discharge inception voltages evaluation to Paschen's law and the relationship between the PD quantities occurring insulation breakdown and PD occurring area.

  • PDF

The Study on Characteristics of High Frequency Glow Discharge in Organic Vapor (유기 가스중 고주파 글로우가전 특성에 관한 연구)

  • 이덕출;김은배;박상현;박종대
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.34 no.9
    • /
    • pp.355-360
    • /
    • 1985
  • In this paper, the discharge phenomena of high frequency glow discharge in organic vapor are basically investigted to establish the growth mechanism and preparation technique for organic thin film. According to the increasing of discharge frequency, the discharge firing voltage(Vs) of organic vapor decreases. The dependence of discharge voltage(Vd) on gas pressure is generally in accord with Paschen's Law and Vd decreases as gas flow rate become larger, but increases as dischange current density become higher. And the values of Vd in organic vapor are generally higher than those of inorganic gas.

  • PDF

Effect of Gas Composition on Ozone Generation in Silent Discharge Process

  • Chung, Jae-Woo;Suh, Hyun-Hyo;Park, Hyun-Geoun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E4
    • /
    • pp.169-175
    • /
    • 2003
  • The effect of gas composition on the discharge characteristics and the ozone production in silent discharge (SD) process was investigated. The major gas components, $N_2$, $O_2$, and $H_2O$ influence the discharge properties according to their relative magnitude of ionization thresholds and electron affinities. The generated amount of ozone increased with the discharge energy by increasing the electron mean energy. The higher oxygen content injected, the higher ozone produced. A small amount of water vapor significantly lowered the discharge onset voltage by the ionization threshold decreasing effect and high electrical conductivity. However, the further increase of water vapor contributes to decrease the electron density by the electron affinity The addition of water greatly reduced the ozone generation through the formation of OH radical and the catalytic ozone destruction process.

A Study on the Gas Pulsation in a Rotary Compressor (로타리 압축기의 가스맥동에 관한 연구)

  • 김현진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.8
    • /
    • pp.648-655
    • /
    • 2002
  • For a discharge system of rotary compressor, analytical investigation on the discharge gas pulsation has been carried out. With the aid of four pole theory, acoustic impedance of the discharge system composed of muffler and cavities on both sides of motor with gas passages between them can be calculated using discrete acoustic elements described by transfer matrices, yielding the relationship between discharge mass flow rate and gas pulsation at the discharge port. This method of predicting the gas pulsation was validated by measurement data. Effects of change in discharge muffler geometries on the gas pulsation also were investigated, demonstrating that this method can be used for muffler design.

Experimental Study on the Effect of Plasma Reactor Type on Corona Discharge and NO-NO2 Conversion Characteristics (플라즈마 반응기구조에 따른 코로나방전 및 NO-NO$_2$ 전환특성에 관한 실험적 연구)

  • 박용성;전광민
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.65-71
    • /
    • 2002
  • Characteristics of corona discharge of the different types of the plasma reactors which are cone-hole and cone-plate is investigated experimentally. The discharge starts at lower voltage for the cathode corona than the anode corona and spark occurs at higher voltage for the cathode corona. And the cathode corona makes more stable discharge than the anode corona. The effect of the base gas in corona discharge for different O$_2$/N$_2$ concentrations is related with the gas molecular weight. The discharge for the smaller molecular weight gas occurs easier than for the high molecular weight gas. The discharge current decreases with the increase of oxygen concentration and it increases more sharply for anode corona than for cathode corona as discharge voltage increases after corona onset voltage. NO-NO$_2$ conversion increases with the energy density of corona discharge and the addition of O$_2$ in a base N$_2$ gas.