• Title/Summary/Keyword: Discharge Rate

Search Result 2,252, Processing Time 0.027 seconds

Discharge Analysis of Chungcheongbuk-do Residents using National Hospital Discharge In-depth Injury Survey in the Recent 5 Years (퇴원손상심층조사 자료를 이용한 최근 5년간의 충청북도 거주민의 퇴원 분석)

  • Kim, Hae-Sook
    • Journal of Korea Entertainment Industry Association
    • /
    • v.15 no.8
    • /
    • pp.389-401
    • /
    • 2021
  • This study was performed to generate basic data to establish a health promotion plan for residents of Chungcheongbuk-do by identifying characteristics of discharged patients residing in the Chungcheongbuk-do area from an In-Depth Post-Discharge Injury Survey reported by the Korea Centers for Disease Control and Prevention(KCDCP). The Report provided data on demographic characteristics, medical institution use characteristics, medical use characteristics, and disease characteristics of patients discharged from medical institutions with 100 or more beds from 2013 to 2017. The total number of Chungcheongbuk-do residents who were admitted and discharged from 2013 to 2017 was estimated to be 1,656,590, and the discharge rate was 21,089, which was higher than the national average of 13,882 in 2016. The regions where the discharge rate increased during this period include Goesan, Yeongdong, Boeun, Okcheon, Jeungpyeong, and Eumseong-gun, which are mainly rural areas. Among the patients hospitalized and discharged from hospitals outside the Chungcheongbuk-do area, the discharge rate of patients who used hospitals in Incheon/Gyeonggi areas and Daejeon/Chungnam areas increased slightly. Among the malignant tumor patients, the number of lung cancer(included trachea & bronchial cancer) patients was the highest. In addition, the discharge rate was highest for patients with respiratory diseases. This study suggests that efforts need to be made to lower the discharge rate for infection, circulatory disease, genitourinary disease, and musculoskeletal disorder patients

A study on the RE/DC discharge cleaning for high vacuum SUS chamber (RF/DC 방전을 이용한 고 진공용SUS 용기세정에 관한 연구)

  • 김정형;임종연;서인용;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.3
    • /
    • pp.298-302
    • /
    • 2001
  • Cleaning effect of RF/DC discharge to clean the surface of vacuum chamber was studied for various discharge conditions. Glow discharge cleaning without baking reduced the outgassing rate to 1/2, which was similar to that after the only baking treatment alone. Glow discharge cleaning treatment with baking improved the cleaning efficiency and then the outgassing rate was remarkably reduced to 1/20. It was found that the ion energy and the ion density were important factors in cleaning the surface. RF discharge cleaning was more effective than BC discharge cleaning.

  • PDF

A Study on Relationship Between Discharge Voltage and Plasma Characteristics of Hall Thruster Using a Hybrid Model (하이브리드 모델을 이용한 홀 추력기의 방전 전압과 플라즈마 특성 관계 연구)

  • Jung, Gwanyong;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.611-620
    • /
    • 2020
  • The effect of discharge voltage on electron mean energy, electric potential, ionization rate, neutral and ion density of Hall thruster was analyzed using a two-dimensional axisymmetric hybrid model. The results of the code developed for this study such as discharge current, thrust, and plasma distribution according to discharge voltage of SPT-100ML Hall thruster were compared by experiments and calculations of other researchers for validation. The results show that the electron mean energy, the ionization rate, and the ion density are increased while the neutral density is decreased as the discharge voltage is increased. The thrust and the discharge current are proportional to the discharge voltage.

Performance and Hydraulic Characteristics of Drip Emitters (점적 emitter 의 성능과 수리적 특성)

  • 이남호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.3
    • /
    • pp.33-40
    • /
    • 1999
  • Variations in the discharge rates of drip emittes were examined to find the effects of operation pressure and the tube length and to evaluate performance of the emitters. Several point-source emitters were selected such as pressure compensated, anti-leak pressure compensated, turbulent flow regulated, flow regulated, ready-made dripper, and spaghetti. Combination of operation pressure and tube length were compared. The microirrigatioon system was operated at pressures of 0.5 , 1.0 , 1.5 and 2.0 bar. The discharge from emitters wer collected at every ten meters along the lateral tube and weighted. In order to evaluate the drip emitters performance coeffcient of discharge variation , statistical uniformity, and emission uniformity were calculated. No significant variation in discharge along drip tube resulted with all emitters. There is no trend of variatiiono of discharge rate from pressure compensated emitters with increase in operation pressures. But discharge rate from other types of emitters increased with increase in operation pressures. The nominal discharge of each emitter was secured at pressure of 1.0 bar, Evaluation using statiscal and emission uniformity coefficients indicated that most of the emitters excepts tubulent flow regulated emitter and ready-made dripper performed at excellent level.

  • PDF

Experimental study on impeller discharge flow of a centrifugal compressor (원심 압축기 임펠러 출구 유동에 관한 실험적 연구)

  • 신유환;김광호;손병진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.4
    • /
    • pp.483-494
    • /
    • 1998
  • This study describes the characteristics on impeller discharge flow of a centrifugal compressor with vaneless diffuser. Distorted flow at impeller exit was investigated by measuring of unsteady velocity fluctuation using hot-wire anemometer. As a result, a wake region appears near shroud side and moves to suction side and also to hub side as flow rate decreases. Jet, wake, and their boundary region which can be defined in jet-wake flow model are clearly observed at a high flow rate for the flow coefficient of 0.64, however, as flow rate decreases to the flow coefficient of 0.19, the classification of their regions disappears. Turbulence intensity also increases as flow rate decreases. Measurement error from uncertainty analysis is estimated about 4% at the flow coefficient of 0.19

  • PDF

Sediment Estimation of Large Reservoir Using Daily Flowrate Analysis (일유량 분석을 이용한 대규모 저수지의 퇴사량 추정)

  • 정재성
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.417-423
    • /
    • 1997
  • The objective of this study Is to supply basic data for large reservoir sedimentation research In future and make suggestions to maintain and opera능 the reservoir more of efficiently. At first, previous studios about the estimation of sediment yield rate were reviewed in Korea. And the discharge rating curves of upstream stage gauging stations and the correlation between dam Inflow and stage discharge were analyzed. With the analysis results, the spec유c sediment rate of Soyanggang dam was estimated as 608 m3/km2/yr. It was similar to that of Soyanggang dam feasibility study and 1994's field surveys of the reservoir than that of 1983's field surveys. Because the sediment rating curves were derived under the low discharge conditions, It needs to be checked under the flood conditions. However, the suggested methods such as flowrate analysis and sediment estimation will be useful to the sediment studios In future. Key words . reservoir sediment, sediment yield rate, rating curve, flowrate analysis.

  • PDF

Removal Characteristics of Benzene in Dielectric Barrier Discharge Process

  • Chung, Jae-Woo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E1
    • /
    • pp.13-20
    • /
    • 2002
  • The electrical and chemical properties of the dielectric barrier discharge (DBD) process for the benzene removal were investigated. The benzene removal was initiated with the applied voltage higher than the discharge onset value. The removal efficiency over 95 % was obtained at approximately 1.6 kJ lite $r^{r-1}$ of the electrical energy density. The increase of the inlet concentration decreased the removal efficiency. However, the benzene decomposition rate increased with the inlet concentration . While the increase of the gas retention time enhanced the removal efficiency, the decomposition rate decreased. Identification of the optimum condition between the decomposition rate and the removal efficiency is required for field applications of the DBD process.s.

Dispersion of Li[Ni0.2Li0.2Mn0.6]O2 Powder by Surfactant for High-power Li-ion Cell

  • Yun, Su-Hyun;Park, Yong-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1598-1602
    • /
    • 2009
  • The particle size of Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode powder was controlled effectively by dispersion using lauric acid as a surfactant. The samples treated by lauric acid showed smaller particles of approximately half the original size compared to the particles of a pristine sample. A structural change due to the dispersion of Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ powder was not detected. The rate performance of the Li[$Ni_{0.2}Li_{0.2}Mn_{0.6}]O_2$ cathode was improved by dispersion using lauric acid, which was likely due to the decrease of the particle size. In particular, a sample dispersed pristine powder using lauric acid (L2) presented a greatly enhanced discharge capacity and capacity retention at a high C rate. The discharge capacity of a pristine sample was only 133 m$Ahg^{-1}$ (3C rate) and 96 m$Ahg^{-1}$ (12C rate) at the tenth cycle. In contrast, the L2 electrode delivered higher discharge capacities of 160 m$Ahg^{-1}$ (3C rate) and 129 m$Ahg^{-1}$ (12C rate) at the tenth cycle. The capacity retention at a rate of 12C/2C was also enhanced from ~ 45% (pristine sample) to 57% (L2) by treatment with lauric acid.

A Study on the Disinfection of Coliform Group in the Effluent of Sewage Plant by High Voltage Electric Field Treatment (고전압 전기장을 이용한 하수처리장 방류수 중의 대장균군 소독에 관한 연구)

  • Lee, Min-Gyu;Chung, Geun-Sik;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.17 no.7
    • /
    • pp.817-826
    • /
    • 2008
  • Using high voltage electric fields induced by high voltage AC (10-12 kV/cm, 20 kHz) and pulsed (20-30 kV/cm, 40 Hz) electric field generator as a semipermanent and environment-friendly disinfecting apparatus, the disinfection effect of coliform group in the effluent of sewage plant was investigated. The effects of electric field strength, treatment time, discharge area of a discharge tube, water quality factors (electric conductivity, pH and SS) on its death rate were examined. The death rate of coliform group was increased with increasing electric field strength and treatment time. For AC and pulsed electric field generator, the critical electric field strength was 6 kV/cm and 2 kV/cm, respectively, and the critical treatment time was 5 min and 2 min, respectively, regardless of electric field strength. Comparing the death rate of coliform group by AC and pulsed electric fields used in this study, its death rate was higher for the latter than the former, but did not increase linearly with increasing electric field strength. The results obtained for the effects of discharge area, electric conductivity, pH and SS on the death rate of coliform group using AC electric field (12 kV/cm, 20 kHz) were as follows: its death rate showed the trend to increase linearly with increasing discharge area; for the effect of electric conductivity, its death rate was increased with increasing electric conductivity, regardless of ionic species, increased with increasing cationic valency, but was similar between the same cationic valency; the pH $5{\sim}9$ used in this study did not affect its death rate; its death rate was decreased with increasing SS concentration.

Numerical and Experimental Studies on the Fluidic Characteristics and Performance of Liner-type Microtube

  • Kim, Jin Hyun;Woo, Man Ho;Kim, Dong Eok
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • Purpose: Methods: Three-dimensional CFD modeling was conducted to analyze the flow structure and discharge flow rate corresponding to the variation in the geometry of the flow channel in a microtube. Additionally, experiments were carried out, and the discharge flow rate was measured at various inlet pressures and inclination angles of the microtube. Results: The quantitative data of velocity distribution and discharge flow rate were obtained. As the width and length of the microtip increased, the discharge flow rate decreased significantly because of the increase in the loss of pressure along the microtube. As the depth of the microtip increased, the flow rate also increased because of the reduction in the flow resistance. However, in this analysis, the variation in the angle of the microtip did not influence the flow rate. From the experimental results, it was observed that the flow rate increased linearly with the increase in the inlet pressure, and the effects of the inclination angle were not clearly observed in those test cases. The values of the flow rate obtained from the experiments were significantly lower than that obtained from the CFD analysis. This is because of the distortion of the shape of the flow path inside the microtube during the fabrication process. The distortion of the flow path might decrease the flow cross-sectional area, and it would increase the flow resistance inside the microtube. The variation in the flow rate corresponding to the variation in the inlet pressure showed similar trends. Conclusions: Therefore, the results of the numerical analysis obtained from this study can be efficiently utilized for optimizing the shape of the microtip inside a microtube.