• Title/Summary/Keyword: Disc Material

Search Result 354, Processing Time 0.026 seconds

Optimal Design of Synthetic Intervertebral Disc Prosthesis Considering Nonlinear Mechanical Behavior (비선형 거동을 고려한 척추 인공추간판 보철물의 최적설계)

  • Gwon, Sang-Yeong;Kim, Hyeong-Tae;Ha, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.234-242
    • /
    • 2002
  • A shape optimal design of synthetic intervertebral disc prosthesis is performed using a three-dimensional finite element method. Geometric parameters are introduced to model the cross-sectional geometry of the intervertebral disc. It is assumed that the total strain energy in the intact intervertebral disc is minimized under the normal load conditions, as often cited in other references. To calculate the stain energy density, both the nonlinear material properties and the large deformations are taken into account. The design variables of the annulus fiber angle and the area ratio of the nucleus pulposus are calculated as 31°and 30%, respectively, which complies well with the intact disc. Thus, the same optimization procedure is applied to the design of the synthetic intervertebral disc prosthesis whose material properties are different from the intact disc. For the given synthetic material properties, the values of 67°and 24% for the fiber angle and the area ratio are obtained.

A Fatigue Analysis of Thermal Shock Test in Brake Disc Material for Railway (철도차량 제동디스크 소재 열충격 실험에 대한 피로해석)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.615-620
    • /
    • 2010
  • During braking of railway vehicles the repetitive thermal shock leads to thermal cracks on disc surface, and the lifetime of brake disc is dependent on the number of trimming works for removing these thermal cracks. Many tries for development of high heat resistant brake disc to extend the disc life and to warrant reliable braking performance has been continued. In present study, we carry out the computational fatigue analysis for thermal fatigue test in three candidate materials which were made to develop new high heat resistant material. Using FEM, we simulate thermal fatigue test in three candidate materials and conventional disc material. We then estimate the number of cycle to thermal crack initiation based on data from mechanical fatigue tests, and the results are compared with each material. For each material, the correction factor for $N_{f-40}$ which is the number of cycles when crack over $40{\mu}m$ was observed in thermal fatigue test is decided. From this study, we can verify the performance of thermal fatigue test system and suggest a qualitatively comparative method for heat resistance by FEM analysis of thermal shocking phenomenon.

  • PDF

Far lateral lumbar disc extrusion in a dachshund dog

  • Kim, Jaehwan;Kim, Hyoju;Hwang, Jeongyeon;Eom, Kidong
    • Korean Journal of Veterinary Research
    • /
    • v.59 no.3
    • /
    • pp.165-169
    • /
    • 2019
  • A 6-year-old Dachshund was presented with acute, non-localized pain without neurological dysfunction. Radiography revealed multiple calcifications of intervertebral discs and narrowing of disc space in the thoracolumbar region. Computed tomography and magnetic resonance imaging revealed calcified disc-like material entrapped in the left extraforaminal area and showed a displaced nerve root. Fenestration and removal of the extruded disc material were performed in a routine manner. Histopathological examination showed degenerative disc materials with severe calcification both in the nucleus pulposus and around the annulus fibrosis. Based on imaging, surgical, and histopathologic results, the dog was diagnosed with far lateral lumbar disc extrusion.

A study on design and control of hydraulic pin-on-disc type tribotester (유압식 핀-온-디스크형 마멸시험기의 설계 및 제어에 관한 연구)

  • 박명식;박성환;이진걸
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1436-1440
    • /
    • 1996
  • The wear mechanism of material is an important mechanic property to select a material's life and a optimum work condition. Although there are many researches about a wear mechanism of material, the pin-on-disc type tribotester is widely known to us. It is difficult to add a variable and heavy load in the existing pin-on-disc type tribotester to estimate this wear mechanism. And due to a rotation of a disc, it is impossible to add a constant force. But we can solve this problem by using a hydraulic servo system. Therefore, in order to investigate a wear mechanism of materials, it is necessary to design a hydraulic pin-on-disc type tribotester and construct a controller against a variable disturbance.

  • PDF

Residual stress in an elastoplastic annular disc interacting with an elastic inclusion

  • Zarandi, Somayeh Bagherinejad;Lai, Hsiang-Wei;Wang, Yun-Che;Aizikovich, Sergey M.
    • Coupled systems mechanics
    • /
    • v.8 no.3
    • /
    • pp.273-287
    • /
    • 2019
  • Elastoplastic analysis of an annular disc, being fully constrained on its outer rim and interacting with a purely elastic inclusion perfectly bonded with its inner rim, is conducted to study its plastic deformation and residual stress under thermal cycles. The system is termed the composite disc. Quasi-static plane-strain deformation is assumed, and the von Mises yield criterion with or without the Ludwik hardening rule is adopted in our finite element calculations. Effects of multiple material properties simultaneously being temperature dependent on the plastic behavior of the composite disc are considered. Residual stress is analyzed from a complete loading and unloading cycle. Results are discussed for various inclusion radii. It is found that when temperature dependent material properties are considered, the maximum residual stress may be greater than the maximum stress inside the disc at the temperature-loaded state due to lower temperature having larger yield stress. Temperature independent material properties overestimate stresses inside materials, as well as the elastic irreversible temperature and plastic collapse temperature.

Analysis of Damaged Instance and Forming Fault for Disc Part in Automotive Steel Wheel (자동차용 스틸휠 디스크부품의 성형불량 및 파손사례분석)

  • Lee, Sung-Hee;Kim, M.Y.;Kim, T.G.;Yun, H.Y.;Kang, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.234-238
    • /
    • 2006
  • In this research, an analysis of damaged instance and forming fault for disc part in automotive steel wheel was performed. Rolled steel material, which had been used in the manufacturing of the damaged disc part, was prepared for tensile test, quantitative analysis of chemical component and acquirement of scanning electron microscope images. Although the results of mechanical properties and chemical component ratio for the material satisfied the suggested specification, some material inherent problem was found in the scanning electron microscope images. Finally, in an analysis of chemical component for the damaged disc part used in road condition, mismatching of chemical component ratio between the suggested specification and test result was found.

  • PDF

Diagnostic Imaging of Intervertebral Disk Disease in 3 Dogs (추간판 질환 3례에서의 진단영상)

  • 엄기동;장동우;서민호;정주현;최호정;이기창;이희천;이영원;최민철
    • Journal of Veterinary Clinics
    • /
    • v.18 no.3
    • /
    • pp.284-287
    • /
    • 2001
  • Three dogs referred to Veterinary Medical Teaching Hospital, Seoul National University were diagnosed as intervertebral disc disease. Physical examination, neurologic examination, survey radiograph, and myelography were performed in patients. Case 1 showed narrowing intervertebral space and calcified intervertebral disc material in survey radiograph. Case 2 showed increased opacity in the intervertebral opacity in survey radiograph. All of 3 cases showed extradural pattern during myelography. In survey radiography, radiographic signs consistent with intervertebral disc herniations include narrowing of the disc space and the dorsal intervertebral articular process joint space, small intervertebral foramen, increase opacity in the intervertebral foramen and extruded, mineralized disc material within the vertebral canal. Myelography is useful for evaluating the spinal cord and the cauda equina. Indication for myelography includes confirming a spinal lesion seen or suspected on survey radiograph, defining the extent of a survey lesion, finding a lesion not observed on survey radiograph, and distinguishing between surgical and nonsurgical lesion. In presentcases, two of three cases show radiographic signs of IVDD with survey radiograph and all of three case show extradural pattern during myelography. It is observed that intervertebral disc disease is one of the most important indication for radiographic examination and myelography of the vertebral column of small animals.

  • PDF

Comparison of Cu wafer and Disc using the electrochemical and Friction method during the CMP (Chemical Mechanical Planarization) (CMP 공정중 전기화학적 방법과 마찰력을 이용하여 Cu wafer와 Disc의 특성 비교)

  • Kang, Young-Jae;Eom, Dae-Hong;Song, Jae-Hoon;Park, Jin-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1300-1303
    • /
    • 2004
  • Copper는 낮은 저항률과 높은 Electromigration 저항 때문에 반도체 소자에 배선 재료로 사용된다. CMP 공정을 이용 하여 Cu wafer의 여러 가지 특성을 파악하기에는 wafer의 소모량이 많고 고가가의 비용이 예상 되므로, 본 논문에서는 비용절감을 위하여 wafer를 Disc로 대체 하고자 실험을 진행 하였고 Cu wafer와 Disc의 비료 방법은 우선 PM-5 (Genitech. co) 장비를 이용하여 removal rate의 차이점을 알 아 보았으며, 서로의 etch rate을 reomval rate과 비교하였다. EG&G 273A를 통하여 Cu wafer와 disc의 corrosion potential과 $R_p$ (Polarization resistance)값을 서로 비교 하였다. 이 논문에서는 이러한 것들을 서로 비교 하여, Cu wafer와 disc에서의 상관관계를 알고자 하였으며, 만약에 Cu wafer와 disc의 특성이 비슷하다면, Cu wafer 대신에 disc를 이용 하여 실험하여도 되는지에 관하여 조사 하였다.

  • PDF

A study on the improvement of frictional performance of friction material for automobile brake by spray treatment (용사처리에 의한 자동차 브레이크용 마찰재료의 마찰성능개선에 관한 연구)

  • 김윤해;배창원;손태관
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.67-76
    • /
    • 1998
  • Friction materials for brake linings and clutches have severe performance requirements. The principal function of such frictional elements is to convert kinetic energy to heat, and then either to absorb or to dissipate heat. In order to achieve these objectives, the coefficient of friction must be as high as possible, independent of variations in operating conditions, and the necessary energy conversion must be accomplished with a minimum of wear on the contacting parts. In this study, Al powder, Al bronze powder and Mo powder used in general for automobile brake was sprayed on automobile brake disc to restrain rust and to maintain friction performance. Dynamo and corrosion tests have been carried out. It is concluded that the sprayed disc with Al bronze powder has the most improved frictional performance and anti-corrosive characteristics. The main results obtained can be summarized as follows; 1. From the corrosion current density test for gray cast iron and sprayed disc with powders of Al, Al bronze and Mo, it was cleared that the spray treatment with Al bronze powder showed the most superior anti-corrosive characteristics than other powders. 2. By anode polarization toward the noble direction from corrosion potential, corrosion current density with sprayed brake disc by Al-bronze powder was the lowest. 3. Mean frictional coefficients obtained from dynamo test are as follows : the sprayed disc with Al(99.99%) powder was 0.190 ; the sprayed disc with Al-bronze powder was 0.312 ; the sprayed disc with Mo powder was 0.257 ; the non-sprayed disc of gray cast iron was 0.331. In the case of the sprayed disc Al-bronze powder showed the most excellent frictional characteristics . 4. Amount of burnish quantity obtained from burnish test by dynamometer is as follows : the sprayed disc with Al-powder was 1.079 mm : the sprayed disc with Al-bronze powder was 0.155 mm : the sprayed disc with Mo powder was 0.253 mm : the non-sprayed disc of gray cast iron was 0.241 mm. Al-bronze powder also showed the most excellent burnish characteristics.

  • PDF

Elasto-plastic thermal stress analysis of functionally graded hyperbolic discs

  • Demir, Ersin;Callioglu, Hasan;Sayer, Metin
    • Structural Engineering and Mechanics
    • /
    • v.62 no.5
    • /
    • pp.587-593
    • /
    • 2017
  • The objective of this analytical study is to calculate the elasto-plastic stresses of Functionally Graded (FG) hyperbolic disc subjected to uniform temperature. The material properties (elastic modulus, thermal expansion coefficient and yield strength) and the geometry (thickness) of the disc are assumed to vary radially with a power law function, but Poisson's ratio does not vary. FG disc material is assumed to be non-work hardening. Radial and tangential stresses are obtained for various thickness profile, temperature and material properties. The results indicate that thickness profile and volume fractions of constituent materials play very important role on the thermal stresses of the FG hyperbolic discs. It is seen that thermal stresses in a disc with variable thickness are lower than those with constant thickness at the same temperature. As a result of this, variations in the thickness profile increase the operation temperature. Moreover, thickness variation in the discs provides a significant weight reduction. A disc with lower rigidity at the inner surface according to the outer surface should be selected to obtain almost homogenous stress distribution and to increase resistance to temperature. So, discs, which have more rigid region at the outer surface, are more useful in terms of resistance to temperature.