• Title/Summary/Keyword: Disaster Response Robot

Search Result 16, Processing Time 0.024 seconds

A new approach to quantify safety benefits of disaster robots

  • Kim, Inn Seock;Choi, Young;Jeong, Kyung Min
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1414-1422
    • /
    • 2017
  • Remote response technology has advanced to the extent that a robot system, if properly designed and deployed, may greatly help respond to beyond-design-basis accidents at nuclear power plants. Particularly in the aftermath of the Fukushima accident, there is increasing interest in developing disaster robots that can be deployed in lieu of a human operator to the field to perform mitigating actions in the harsh environment caused by extreme natural hazards. The nuclear robotics team of the Korea Atomic Energy Research Institute (KAERI) is also endeavoring to construct disaster robots and, first of all, is interested in finding out to what extent safety benefits can be achieved by such a disaster robotic system. This paper discusses a new approach based on the probabilistic risk assessment (PRA) technique, which can be used to quantify safety benefits associated with disaster robots, along with a case study for seismic-induced station blackout condition. The results indicate that to avoid core damage in this special case a robot system with reliability > 0.65 is needed because otherwise core damage is inevitable. Therefore, considerable efforts are needed to improve the reliability of disaster robots, because without assurance of high reliability, remote response techniques will not be practically used.

Development of Series Connectable Wheeled Robot Module (직렬연결이 가능한 소형 바퀴 로봇 모듈의 개발)

  • Kim, Na-Bin;Kim, Ye-Ji;Kim, Ji-Min;Hwang, Yun Mi;Bong, Jae-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.941-948
    • /
    • 2022
  • Disaster response robots are deployed to disaster sites where human access is difficult and dangerous. The disaster response robots explore the disaster sites prevent a structural collapse and perform lifesaving to minimize damage. It is difficult to operate robots in the disaster sites due to rough terrains where various obstacles are scattered, communication failures and invisible environments. In this paper, we developed a series connectable wheeled robot module. The series connectable wheeled robot module was developed into two types: an active driven robot module and a passive driven robot module. A wheeled robot was built by connecting the two active type robot modules and one passive type robot module. Two robot modules were connected by one DoF rotating joint, allowing the wheeled robot to avoid obstructions in a vertical direction. The wheeled robot performed driving and obstacle avoidance using only pressure sensors, which allows the wheeled robot operate in the invisible environment. An obstacle avoidance experiment was conducted to evaluate the performance of the wheeled robot consisting of two active driven wheeled robot modules and one passive driven wheeled robot module. The wheeled robot successfully avoided step-shaped obstacles with a maximum height of 80 mm in a time of 24.5 seconds using only a pressure sensors, which confirms that the wheeled robot possible to perform the driving and the obstacle avoidance in invisible environment.

Development of Tele-operation Interface and Stable Navigation Strategy for Humanoid Robot Driving (휴머노이드 로봇의 안전한 차량 주행 전략 및 원격 제어 인터페이스 개발)

  • Shin, Seho;Kim, Minsung;Ahn, Joonwoo;Kim, Sanghyun;Park, Jaeheung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.904-911
    • /
    • 2016
  • This paper presents a novel driving system by the humanoid robot to drive a vehicle in disaster response situations. To enhance robot's capability for substituting human activities in responding to natural and man-made disaster, the one of prerequisite skills for the rescue robot is the mounted mobility to maneuver a vehicle safely in disaster site. Therefore, our driving system for the humanoid is developed in order to steer a vehicle through unknown obstacles even under poor communication conditions such as time-delay and black-out. Especially, the proposed system includes a tele-manipulation interface and stable navigation strategies. First, we propose a new type of path estimation method to overcome limited communication. Second, we establish navigation strategies when the operator cannot recognize obstacles based on Dynamic Window Approach. The effectiveness of the proposed developments is verified through simulation and experiments, which demonstrate suitable system for driving a vehicle in disaster response.

A Target Position Reasoning System for Disaster Response Robot based on Bayesian Network (베이지안 네트워크 기반 재난 대응 로봇의 탐색 목표 추론 시스템)

  • Yang, Kyon-Mo;Seo, Kap-Ho;Lee, Jongil;Lee, Seokjae;Suh, Jinho
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.4
    • /
    • pp.213-219
    • /
    • 2018
  • In this paper, we introduce a target position reasoning system based on Bayesian network that selects destinations of robots on a map to explore compound disaster environments. Compound disaster accidents have hazardous conditions because of a low visibility and a high temperature. Before firefighters enter the environment, the robots notify information in advance, such as victim's positions, number of victims, and status of debris of building. The problem of the previous system is that the system requires a target position to operate the robots and the firefighter need to learn how to use the robot. However, selecting the target position is not easy because of the information gap between eyewitness accounts and map coordinates. In addition, learning the technique how to use the robots needs a lot of time and money. The proposed system infers the target area using Bayesian network and selects proper x, y coordinates on the map based on image processing methods of the map. To verify the proposed system, we designed three example scenarios based on eyewetinees testimonies and compared time consumption between human and the system. In addition, we evaluate the system usability by 40 subjects.

Mission Scenario-based Design of Hydraulic Manipulators for Armored Robot Systems (미션 시나리오기반 장갑형 로봇시스템 유압매니퓰레이터 설계)

  • Jeong, Dongtak;Kim, Cheol;Kim, Ju Hyun;Suh, Jinho;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.51-60
    • /
    • 2017
  • In this study to develop disaster response robot in complex disaster site, we present the design of hydraulic manipulators for armored robot systems. To this end, we performed voice of customer researches with firefighters and rescue personnel. We created and analyzed the mission scenario of firefighters and rescue personnel in complex disaster situations, and derived the required functions of the robot to successfully perform missions. A heavy-duty, heat resistant, dexterous hydraulic robot manipulators is designed to realize the required functions. The designed robot has been verified through simulations and analysis in terms of the working area of the robot, actuating torques, and temperature analysis.

Development of Scenario for Utilization in Education of Disaster Response Robots and Effective Analysis of its Application (재난안전로봇의 교육적 활용을 위한 시나리오 개발 및 그 활용의 효과분석)

  • Kang, Ung Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.160-166
    • /
    • 2021
  • In this study, we aim to develop a scenario for educational utilization of disaster response robots that can be used at fire sites and analyze the effectiveness of scenarios according to robot utilization education. Our scenarios were developed based on direction, reality, and rationality determined through the use of a questionnaire survey distributed to current firefighters. In addition, the educational utilization of disaster response robots and training effectiveness were analyzed through repetitive robot control training by a robot development team, current firefighters, and college students. Robot control was divided into direct control, monitor control, and simulation control, and tests were carried out five times. As a result of the analysis of the robot control test, the average time spent for each group was 28 seconds for college students, followed by development teams (30second) and incumbent firefighters (38second). According to the individual analysis results, firefighters (maximum 35second) in direct control, the development team (maximum 14second) in monitor control, and firefighters (maximum 22second) in simulation control showed the effect of shortening control time. These results show that robot control education and training is necessary for robots to be used more effectively at disaster sites.

Control Strategy and Verification of Dual-Arm Manipulator for Disaster-Responding Special Purpose Machinery (재난 대응 특수목적기계의 양팔작업기 제어전략 및 검증)

  • Kim, Jin-Tak;Park, Sang-Sin;Han, Sang-Cheol;Kim, Jin-Hyeon;Jo, Jeong-San
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.31-37
    • /
    • 2020
  • We are concerned with the dual-arm manipulation for disaster-responding special-purpose machinery. This paper presents a control strategy for performing complex work in an irregular environment, the control algorithm, the hydraulic circuit, and the master devices. The occurrence of collapse accidents at disaster sites such as natural disasters and building collapses is increasing, which is emerging as a social problem. In particular, for the initial response, various tasks must be performed in an irregular environment. The Marionette algorithm for intuitive control of 'as if the operator's arm is moving' was presented as a control strategy for dual-arm manipulators with attachments and the prototype. Next, the hydraulic circuit, control system, and wearable-type master device presented to implement the Marionette algorithm were explained and verified through an experiment in which rebar-cutting, drum-lifting, and lifting a bottle with one arm and pouring the water into the bucket with the other arm were tested.

Development and Performance Evaluation of Multi-sensor Module for Use in Disaster Sites of Mobile Robot (조사로봇의 재난현장 활용을 위한 다중센서모듈 개발 및 성능평가에 관한 연구)

  • Jung, Yonghan;Hong, Junwooh;Han, Soohee;Shin, Dongyoon;Lim, Eontaek;Kim, Seongsam
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_3
    • /
    • pp.1827-1836
    • /
    • 2022
  • Disasters that occur unexpectedly are difficult to predict. In addition, the scale and damage are increasing compared to the past. Sometimes one disaster can develop into another disaster. Among the four stages of disaster management, search and rescue are carried out in the response stage when an emergency occurs. Therefore, personnel such as firefighters who are put into the scene are put in at a lot of risk. In this respect, in the initial response process at the disaster site, robots are a technology with high potential to reduce damage to human life and property. In addition, Light Detection And Ranging (LiDAR) can acquire a relatively wide range of 3D information using a laser. Due to its high accuracy and precision, it is a very useful sensor when considering the characteristics of a disaster site. Therefore, in this study, development and experiments were conducted so that the robot could perform real-time monitoring at the disaster site. Multi-sensor module was developed by combining LiDAR, Inertial Measurement Unit (IMU) sensor, and computing board. Then, this module was mounted on the robot, and a customized Simultaneous Localization and Mapping (SLAM) algorithm was developed. A method for stably mounting a multi-sensor module to a robot to maintain optimal accuracy at disaster sites was studied. And to check the performance of the module, SLAM was tested inside the disaster building, and various SLAM algorithms and distance comparisons were performed. As a result, PackSLAM developed in this study showed lower error compared to other algorithms, showing the possibility of application in disaster sites. In the future, in order to further enhance usability at disaster sites, various experiments will be conducted by establishing a rough terrain environment with many obstacles.

Established Smart Disaster Safety Management Response System based on the 4th Industrial Revolution (4차 산업혁명 기반 스마트 재난안전관리 대응체계 구축)

  • Kang, Heau-Jo
    • Journal of Digital Contents Society
    • /
    • v.19 no.3
    • /
    • pp.561-567
    • /
    • 2018
  • In this paper, we apply this method to the entire process of smart disaster safety management based on the $4^{th}$ industrial revolution to minimize human, social, economic and environment damage from accidents and disasters, prevention evaluation and disaster information collection analysis and real-time detection of field situation. Prevention of $5^{th}$ generation communication system by analysis, contrast by education and training using virtual reality and augmented reality disaster safety management decision support system intelligent robot for recovery, disaster, discovery, reconnaissance relief, and scale analysis of damages were proposed.

Study on 2.5D Map Building and Map Merging Method for Rescue Robot Navigation (재난 구조용 로봇의 자율주행을 위한 지도작성 및 2.5D 지도정합에 관한 연구)

  • Kim, Su Ho;Shim, Jae Hong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.4
    • /
    • pp.114-130
    • /
    • 2022
  • The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.