• Title/Summary/Keyword: Disaster Prevention Project

Search Result 94, Processing Time 0.025 seconds

A Study on the Management of Construction Project for Preventing Accidents of Reclamation : basic on the collapse of Sangdo Kindergarten (도심지 소규모 재개발·재건축공사시 흙막이가시설 사고예방을 위한 건설사업관리 방안 연구 : 상도유치원 붕괴사고 중심으로)

  • Oh, Se-kil;Park, Joo-Moon
    • Journal of Urban Science
    • /
    • v.8 no.1
    • /
    • pp.33-44
    • /
    • 2019
  • The purpose of this study is to investigate the cause of repeated accidents through the investigation and analysis of the collapse cases of domestic earthquakes in order to prevent the earthquake disaster in the urban redevelopment and reconstruction. It is designed and constructed to draw out various problem factors and to find solutions to these problems. And the contents related to various laws and systems of the construction project management stage. Especially. In the management of the construction management centered on the safety management and quality control of the technical aspect design, supervision, construction phase through the cause of the accident and improvement measures based on the investigation report of the collapse of the construction site near Sangdo Kindergarten in Seoul. Supervisor. And constructors should be settled on the responsibility and responsibility of God. In order to achieve the purpose of the project, a system is established to link worker-centered occupational safety and health management with technology-based safety construction management, and analysis of how the quality control of the earthquake prevention affects safety construction management The purpose of this study is to prepare the optimum management plan of construction business.As a result of this study, it is aimed to accomplish the purpose of small scale redevelopment and reconstruction construction project by providing optimization method in the stage of construction project management in order to prevent collapse caused by differences in design,Is expected.

A Study on Hydrophilic Protection Block Development for Reduction of coastal disaster (연안재해 저감을 위한 친수형 호안 블록개발에 관한 연구)

  • Kim, Jong-Gil
    • Journal of Digital Convergence
    • /
    • v.15 no.3
    • /
    • pp.211-219
    • /
    • 2017
  • Among government projects for reduction of coastal disaster, coastal maintenance project stage 1(2000~2009) and stage 2(2010~2019) to reduce coastal erosion and sedimentation are currently under process. In performing the coastal maintenance projects, it is necessary to install artificial concrete armor units for coastal protection. Presently in Korea, products manufactured in Japan are applied to the site, or blocks self-developed by the construction firms are installed. However, there is a lack of technical reviews such as verification of hydraulic characteristics, securing the stability and design techniques. This study is intended to develop waterfront shore protection blocks with good accessibility of people and excellent coastal disaster reduction and protection capability. Through this study, hydraulic characteristics and stability coefficients of shore protection blocks could be drawn.

A Planning Direction of Resilient Waterfront City considering Technological and Social Meaning (기술·사회적 특성을 고려한 워터프론트 도시의 리질리언트 공간계획)

  • Lee, Kum-Jin;Choi, Jin-Hee
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.352-359
    • /
    • 2018
  • Purpose: This study aims to suggest new strategy of planning water management and land use in response to abnormal weather which allow waterfront to be the cities through the experience of Netherlands resilient project. Method: A planning direction is developed based on Dutch national resilient policy and strategy as well as resilient theory of technical and social aspects, focusing on a new waterfront development that responds to abnormal weather. Results: The water control strategy, for flexibly responding to the sea level rise and flooding caused by the climate change through the experience of Dutch resilience, is as follows: 1)Customized prevention plan according to the local property 2)Creating spatial planning by considering disaster risk level and fragility 3)Establishing urban planning by considering the flood risk level. Conclusion: A new urban development method, particularly a resilience strategy based on the waterfront space where is most vulnerable to climate change, is required to cope with the abnormal climate beyond the conventional planning.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part II: Under-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part II: 환기부족화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.80-88
    • /
    • 2013
  • The validation of Fire Dynamics Simulator (FDS) was conducted for the under-ventilated fire in well-confined multi-compartments representative of nuclear power plant. Numerical results were compared with experimental data obtained by the OECD/NEA PRISME project. The effects of the numerical boundary conditions (B.C.) in ventilated system and the flame suppression model applied within FDS on the thermal and chemical environments inside the compartment were discussed in details. It was found that numerical B.C. on the vent flow resulting from over-pressure at ignition and under-pressure at extinction should be considered carefully in order to predict accurately the species concentrations rather than temperatures and heat fluxes inside the multi-compartment. The default information of suppression model applied within FDS resulted in artificial phenomena such as flame extinction and re-ignition, and thus the FDS results on the under-ventilated fire showed good agreement with the experimental results as the modified suppression criteria of the fuel used was adopted.

Validation of FDS for Predicting the Fire Characteristics in the Multi-Compartments of Nuclear Power Plant (Part I: Over-ventilated Fire Condition) (원자력발전소의 다중 구획에서 화재특성 예측을 위한 FDS 검증 (Part I: 과환기화재 조건))

  • Mun, Sun-Yeo;Hwang, Cheol-Hong;Park, Jong Seok;Do, Kyusik
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.31-39
    • /
    • 2013
  • The Fire Dynamics Simulator (FDS) has been applied to simulate a full-scale pool fire in well-confined and mechanically ventilated multi-compartments representative of nuclear power plant. The predictive performance of FDS was evaluated through a comparison of the numerical data with experimental data obtained by the OECD/NEA PRISME project. To identify clearly the FDS results regarding to the user-dependence in the process of FDS implementation except for the intrinsic limitation of FDS such as simple combustion model, only the over-ventilated fire condition was chosen. In particular, the importance of accurate boundary conditions (B.C.) in mechanically ventilated system were discussed in details. It was known from FDS results that the B.C. on inlet and outlet vents did significantly affect the thermal and chemical characteristics inside the compartments. Finally, it was confirmed that the FDS imposed an accurate ventilation B.C. provided qualitatively good agreement with temperatures, heat fluxes and concentrations measured inside the nuclear-type multi-compartments.

A Development of Nonstationary Frequency Analysis Model using a Bayesian Multiple Non-crossing Quantile Regression Approach (베이지안 다중 비교차 분위회귀 분석 기법을 이용한 비정상성 빈도해석 모형 개발)

  • Uranchimeg, Sumiya;Kim, Yong-Tak;Kwon, Young-Jun;Kwon, Hyun-Han
    • Journal of Coastal Disaster Prevention
    • /
    • v.4 no.3
    • /
    • pp.119-131
    • /
    • 2017
  • Global warming under the influence of climate change and its direct impact on glacial and sea level are known issue. However, there is a lack of research on an indirect impact of climate change such as coastal structure design which is mainly based on a frequency analysis of water level under the stationary assumption, meaning that maximum sea level will not vary significantly over time. In general, stationary assumption does not hold and may not be valid under a changing climate. Therefore, this study aims to develop a novel approach to explore possible distributional changes in annual maximum sea levels (AMSLs) and provide the estimate of design water level for coastal structures using a multiple non-crossing quantile regression based nonstationary frequency analysis within a Bayesian framework. In this study, 20 tide gauge stations, where more than 30 years of hourly records are available, are considered. First, the possible distributional changes in the AMSLs are explored, focusing on the change in the scale and location parameter of the probability distributions. The most of the AMSLs are found to be upward-convergent/divergent pattern in the distribution, and the significance test on distributional changes is then performed. In this study, we confirm that a stationary assumption under the current climate characteristic may lead to underestimation of the design sea level, which results in increase in the failure risk in coastal structures. A detailed discussion on the role of the distribution changes for design water level is provided.

Long term monitoring of a cable stayed bridge using DuraMote

  • Torbol, Marco;Kim, Sehwan;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.11 no.5
    • /
    • pp.453-476
    • /
    • 2013
  • DuraMote is a remote sensing system developed for the "NIST TIP project: next generation SCADA for prevention and mitigation of water system infrastructure disaster". It is designed for supervisory control and data acquisition (SCADA) of ruptures in water pipes. Micro-electro mechanical (MEMS) accelerometers, which record the vibration of the pipe wall, are used detect the ruptures. However, the performance of Duramote cannot be verified directly on a water distribution system because it lacks an acceptable recordable level of ambient vibration. Instead, a long-span cable-stayed bridge is an ideal test-bed to validate the accuracy, the reliability, and the robustness of DuraMote because the bridge has an acceptable level of ambient vibration. The acceleration data recorded on the bridge were used to identify the modal properties of the structure and to verify the performance of DuraMote. During the test period, the bridge was subjected to heavy rain, wind, and a typhoon but the system demonstrates its robustness and durability.

A Study on management organization with rescue system of marine disaster (해상재해의 관리조직과 구조체제에 관한 연구)

  • 신현식;변헌수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.7
    • /
    • pp.1133-1138
    • /
    • 2002
  • There have been a lot of marine accident due to the increasing transportation by sea in accordance with economic growth. Accordingly, we are fully aware of the importance of the development of safety control system so that many prevent the sacrifice of life and disasters on the sea. The objective·e of this research in to investigate the more effective system by establishing the prevention of safety accident and marine information system as a national project.

A Study on management organization with rescue system of marine disaster (해상재해의 관리조직과 구조체제에 관한 연구)

  • 신현식;변헌수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.522-528
    • /
    • 2002
  • There have been a lot of marine accident due to the increasing transportation by sea in accordance with economic growth . Accordingly, we are fully aware of the importance of the development of safty control system so that may prevent the sacrifice of life and disasters on the sea. The objective of this research in to investigate the more effective system by establishing the prevention of safety accident and marine information system as a national project.

  • PDF

New Environmental Impact Assessment Technology (신환경영향평가기술(新環境影響評價技術)의 개발방향(開發方向))

  • Han, Sang-Wook;Lee, Jong-Ho;Nam, Young-Sook
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.4
    • /
    • pp.277-290
    • /
    • 2000
  • The purpose of this study is to identify the problems of environmental impact assessment(EIA) and to suggest new EIA technology. The problems of EIA in Korea can be summarized as follows. First, the EIA does not reflect the impact of policy, plan and program on environment. Second, the project EIA does not consider the cumulative impacts such as additive impacts, synergistic impacts, threshold/saturation impacts, induced and indirect impacts, time-crowded impacts, and space-crowded impacts. Third, the EIA techniques in Korea are not standardized. Finally, the present EIA suggests only alternatives to reduce adverse impacts. To solve above-mentioned problems, the development of new EIA technology is essential. First, the new EIA technology should be developed toward pollution prevention technology and comprehensive and integrated environmental management technology. Second, new fields of EIA for pollution prevention contain strategic environmental assessment, cumulative impacts assessment, socio-economic impact assessment, cyber EIA and EIA technology necessary after the reunification of Korean Peninsula. Third, EIA technology for integrated environmental management contains the development of integated environment assessment system and the development of packaged EIA technology. The EIA technology for integrated environmental assessment system contains (1) development of integrated impact assessment technology combining air/water quality model, GIS and remote sensing, (2) integrated impact assessment of EIA, traffic impact assessment, population impact assessment and disaster impact assessment. (3) development of integrated technology combining risk assessment and EIA (4) development of integrated technology of life cycle assessment and EIA, (5) development of integrated technology of spatial planning and EIA, (6) EIA technology for biodiversity towards sustainable development, (7) mathematical model and GIS based location decision techniques, and (8) environmental monitoring and audit. Furthermore, there are some fields which need packaged EIA technology. In case of dam development, urban or industrial complex development, tourist development, landfill or combustion facilities construction, electric power plant development, development of port, road/rail/air port, is necessary the standardized and packaged EIA technology which considers the common characteristics of the same kind of development project.

  • PDF