• Title/Summary/Keyword: Disaster On-Site Communication

Search Result 45, Processing Time 0.028 seconds

Augmented Reality Technology Implementation Utilizing Web 3.0 Information Services in Disaster Response Situations (재난대응 상황에서 웹 3.0 정보서비스를 활용한 증강현실 기술 구현 방안)

  • Park, Jong-Hong;Shin, Younghwan;Kim, Yongkyun;Chung, Jong-Moon
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.61-68
    • /
    • 2016
  • In this paper, an implementation method of augmented reality (AR) technology using Web 3.0 information services in the field of disaster response is proposed. The structure and characteristics of semantic web-based Web 3.0 are realized and a AR based mobile visual search (MVS) applied in the disaster sites is described. Based on Web 3.0 and AR MVS, a semantic web ontology oriented configuration scheme for disaster-related information and the communication scheme of information provided by AR technology are proposed. For the purpose of providing disaster-related and customized information to the disaster response site quickly and accurately, a method of leveraging Web 3.0 information services in AR technology is presented.

Improvement Strategies of Arriving Time to the Scene by Enhancing EMTs' Recognition of Triage (구급출동지령서 개선을 통한 구급대원 현장 도착시간 단축방안)

  • Oh, Won Sin;Joung, Suck Hwan;Yoon, Myong Oh
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.1
    • /
    • pp.45-52
    • /
    • 2015
  • The purpose of this investigation is to enhance the survival rate of patients by transporting them to the hospital within the golden hour through the operational improvement of emergency dispatch instruction. To this end, problems and improvements of current operating system were derived by carrying out a survey against paramedics of Incheon city in 2012 and analyzing the current emergency dispatch instruction. This study analyzed the emergency activity daily reports for one year from January 1 through December 31, 2012 and researched the consciousness of 119 emergency medical technician. According to the analysis of the survey, there were no meaningful differences in the on-site arrival times per triage. Therefore, the item of 'Emergency Classification' specified in the emergency dispatch instruction needs to be integrated in the scheme of "triage". Also, the feedbacks of the emergency action log and the emergency dispatch instruction are necessary for 'duty for operation' to review the adequacy to the severity after the end of emergency operation. Finally, the improvement of the system for the continuous communication between the paramedics and the command staff is necessary. This improvements as stated above are expected to contribute to raise survival rate of patients.

IoT-based Guerrilla Sensor with Mobile Web for Risk Reduction

  • Chang, Ki Tae;Lee, Jin Duk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.3
    • /
    • pp.177-184
    • /
    • 2018
  • In case that limited resources can be mobilized, non-structural countermeasures such as 'monitoring using Information and Communication Technology might be one of solutions to mitigate disaster risks. Having established the monitoring system, operational and maintenance costs to maximize the effectiveness might trouble the authority concerned or duty attendant who is in charge. In this respect, "Guerrilla Sensor" would be very cost effective because of the inherent mobility characteristic. The sensor device with the IRIS camera and GPS (Global Positioning System) equipped, is basically battery-operated and communicates with WCDMA (Wideband Code Division Multiple Access). It has a strong advantage of capabilities for 'Disaster Response' with immediate and prompt action on the spot, making the best use of IoT (Internet of Things), especially with the mobile web. This paper will explain how the sensor system works in real-time GIS (Geographic Information System) pinpointing the exact location of the abnormal movement/ground displacement and notifying the registered users via SMS (Short Message Service). Real time monitoring with early warning and evaluation of current situations with LBS (Location Based Service), live image and data information can help to reduce the disaster impact. Installation of Guerrilla sensor for a real site application at Gimcheon, South Korea is also reported.

National Disaster Management, Investigation, and Analysis Using RS/GIS Data Fusion (RS/GIS 자료융합을 통한 국가 재난관리 및 조사·분석)

  • Seongsam Kim;Jaewook Suk;Dalgeun Lee;Junwoo Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_2
    • /
    • pp.743-754
    • /
    • 2023
  • The global occurrence of myriad natural disasters and incidents, catalyzed by climate change and extreme meteorological conditions, has engendered substantial human and material losses. International organizations such as the International Charter have established an enduring collaborative framework for real-time coordination to provide high-resolution satellite imagery and geospatial information. These resources are instrumental in the management of large-scale disaster scenarios and the expeditious execution of recovery operations. At the national level, the operational deployment of advanced National Earth Observation Satellites, controlled by National Geographic Information Institute, has not only catalyzed the advancement of geospatial data but has also contributed to the provisioning of damage analysis data for significant domestic and international disaster events. This special edition of the National Disaster Management Research Institute delineates the contemporary landscape of major disaster incidents in the year 2023 and elucidates the strategic blueprint of the government's national disaster safety system reform. Additionally, it encapsulates the most recent research accomplishments in the domains of artificial satellite systems, information and communication technology, and spatial information utilization, which are paramount in the institution's disaster situation management and analysis efforts. Furthermore, the publication encompasses the most recent research findings relevant to data collection, processing, and analysis pertaining to disaster cause and damage extent. These findings are especially pertinent to the institute's on-site investigation initiatives and are informed by cutting-edge technologies, including drone-based mapping and LiDAR observation, as evidenced by a case study involving the 2023 landslide damage resulting from concentrated heavy rainfall.

Selecting the Geographical Optimal Safety Site for Offshore Wind Farms to Reduce the Risk of Coastal Disasters in the Southwest Coast of South Korea (국내 서남해권 연안재해 리스크 저감을 위한 지리적 해상풍력단지 최적 입지 안전구역 선정 연구)

  • Kim, Jun-Gho;Ryu, Geon-Hwa;Kim, Young-Gon;Kim, Sang-Man;Moon, Chae-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.1003-1012
    • /
    • 2022
  • The horizontal force transfer to the turbine and substructure of a wind power generation system is a very important factor in maintaining the safety of the system, but it is inevitably vulnerable to large-scale coastal disasters such as earthquakes and typhoons. Wind power generation systems built on the coast or far offshore are very disadvantageous in terms of economic feasibility due to an increase in initial investment cost because a more robust design is required when installed in areas vulnerable to coastal disasters. In this study, the GIS method was used to select the optimal site for a wind farm from the viewpoint of reducing the risk of coastal disasters. The current status of earthquakes in the West and South Seas of Korea, and the path and intensity of typhoons affecting or passing through the West and South Seas were also analyzed. Accordingly, the optimal offshore wind farm site with the lowest risk of coastal disasters has been selected and will be used as basic research data for offshore wind power projects in the region in the future.

Development of Portable Calibration System for Non-Contact Water Meters (비접촉식 수위계를 위한 이동형 교정시스템 개발)

  • Hong, Sung-Taek;Shin, Gang-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1808-1815
    • /
    • 2016
  • Stable operation of the dam and the river is directly related to the life and property of citizens, and hydrological observation data reliability is essential to the safety against disaster. Even though real-time data acquisition with high accuracy is needed for scientific and reliable water resources management, currently operating water gauges installed on the upper and down stream of dams or rivers are not easy to be calibrated or corrected on site to ensure higher reliability. K-water Institute has been operating an international accredited calibration laboratory for flows meters, rainfall and water gauges. Rainfall gauges are calibrated in the fixed standard room or on-site. However, due to the absence of on-site calibration procedure and system, on-site calibration for the water gauges are performed by an external agency. Therefore, a development of standard calibration procedure and system for on-site calibration of water gauges is needed to improve the reliability of observed hydrological data.

Performance Analysis of Real-Time Video Management System Based on Multi-Hop Wi-Fi Direct Communication (멀티 홉 Wi-Fi Direct 통신 기반 실시간 영상관리 시스템 성능 분석)

  • Woo, Chae-yul;Jo, Mi-ran;Kwon, Soon-ryang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1472-1480
    • /
    • 2016
  • When disasters such as earthquake, flood, typhoon, fire and terrorism are occurred a video management system is required which can shoot video on the disaster site, and send it to a server located in the command center that can grasp at a glance the site conditions. In this paper, to know the performance elements information needed to construct the video management system. we presented a method of configuring an ad hoc network based on Wi-Fi direct communication. And we also evaluated the performance through built of environment for the video management system. The evaluated performance test items are 'packet flow tests according to the video compression ratios and the image sizes', 'packet flow tests according to the distance and traffic tests', 'packet flow tests according to whether LOS or not', and 'performance test of scenarios'.

Fabrication of Three-Dimensional Scanning System for Inspection of Massive Sinkhole Disaster Sites (대형 싱크홀 재난 현장 조사용 3차원 형상화 장비 구현)

  • Kim, Soolo;Yoon, Ho-Geun;Kim, Sang-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.341-349
    • /
    • 2020
  • Recently, interest in ground subsidence in urban areas has increased after a large sinkhole occurred near the high-story building area in Jamsil, Seoul, Korea, in 2014. If a massive sinkhole occurs in an urban area, it is crucial to assess its risk rapidly. Access to humans for on-site safety diagnosis may be difficult because of the additional risk of collapse in the disaster area. Generally, inspection using drones equipped with high-speed lidar sensors can be utilized. However, if the sinkhole is created vertically to a depth of 100 m, similar to the sinkhole in Guatemala, the drone cannot be applied because of the wireless communication limit and turbulence inside the sinkhole. In this study, a three-dimensional (3D) scanning system was fabricated and operated using a towed cable in a massive vertical sinkhole to a depth of 200 m. A high-speed lidar sensor was used to obtain a continuous cross-sectional shape at a certain depth. An inertial-measuring unit was applied to compensate for the error owing to the rotation and pendulum movement of the measuring unit. A reconstruction algorithm, including the compensation scheme, was developed. In a vertical hole with a depth of 180 m in the mining area, the fabricated system was applied to scan 0-165 m depth. The reconstructed shape was depicted in a 3D graph.

Development of Multipoint Simultaneous Full-duplex Team Communication Module for SCBA (SCBA 면체용 다자간 동시 양방향 팀 통신모듈 개발)

  • Kim, Si-Kuk;Choi, Su-Gil;Lim, Woo-Sub;Han, Yong-Taek
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.165-172
    • /
    • 2019
  • This study presents the design and manufacture of a self-contained breathing apparatus SCBA wireless communication module with a multipoint simultaneous full-duplex communication system to enable communication between team members wearing the SCBA system. It is necessary for fire-fighters to wear the SCBA system during extinguishing and rescue work at the fire site. Evaluation of the team communication module confirmed the feasibility of communication over more than 500 m in the test condition based on the line of sight. By implementing the Ad-hoc function, it was confirmed that the communication distance could be extended to 128 m by automatic routing up to 3 hoc. The vertical distance inside the building for successful communication was up to the 5th floor in the open staircase and up to the 3rd floor in the partitioned staircase. Furthermore, the performance testing of the communication module assuming a fire situation, confirmed that five team members correctly recognized the standard abbreviation of fire and wireless communication without a separate PTT key operation. In addition, the flame resistance was verified by exposing the module to a flame at 950 ± 50 ℃ for 5 s and then immediately extinguishing the flame.

A study on alarm broadcasting method using public data and IoT sensing data (공공데이터와 IoT 센싱 데이터를 활용한 경보방송 방법에 관한 연구)

  • Ryu, Taeha;Kim, Seungcheon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.1
    • /
    • pp.21-27
    • /
    • 2022
  • As society develops and becomes more complex, new and diverse types of disasters such as fine dust and infectious diseases are occurring. However, in the past, there was no PA(Public Address) system that provided accurate information to prepare for such a disaster. In this paper, we propose a public address system that automatically broadcasts an alarm by analyzing polluted air quality data collected from public data and IoT sensors. The warning level varies depending on the air quality, and the information provided by public data may show a significantly different result from the guide area due to various factors such as the distance from the measuring station or the wind direction. To compensate for this, we are going to propose a method for broadcasting by comparing and analyzing data obtained from public data and data from on-site IoT sensors.