지진, 산사태와 같은 재난사고현장에서 조사업무는 시설물 붕괴 등 2차 재난 피해가 발생할 수 있어 많은 위험이 따른다. 이처럼 조사자가 직접 접근하기 힘든 재난현장에서 라이다(light detection and ranging, LiDAR)가 탑재된 드론 측량시스템을 통해 고정밀의 3차원 재난정보를 안전하게 취득할 수 있는 방법을 강구할 수 있다. 이에 본 연구에서는 2023년 4월 성남시 분당구의 정자교 붕괴사고 현장을 대상으로 드론 LiDAR의 재난 현장에서의 활용 가능성을 확인하였다. 이를 위해 사고 교량에 대한 고밀도 포인트 클라우드를 수집하고, 사고 교량을 3차원 지형정보로 복원하여 10점의 지상기준점 측량 성과와 비교하였다. 그 결과, 수평방향으로의 root mean square error (RMSE)는 0.032 m, 수직방향으로 0.055 m로 확인되었다. 또한, 지상 LiDAR를 통해 같은 대상지를 측량하여 생성한 포인트 클라우드와 비교한 결과, 수직방향으로 약 0.08 m가량의 오차가 발생하였지만 전체적인 형상은 큰 차이가 없을 뿐만 아니라 전체적인 데이터 취득과 자료 처리 시간 측면에서 드론 LiDAR가 지상 LiDAR보다 효율적임을 확인할 수 있었다. 따라서 많은 위험이 따르는 재난현장에서 드론 LiDAR의 활용을 통해 안전하고 신속한 현장 조사가 가능할 것으로 판단된다.
본 연구는 AI 기법 중에 최근 널리 사용되고 있는 딥러닝 모델들을 비교하여 재난으로 인해 손상된 건물의 신속한 감지에 가장 적합한 모델을 선정하는 데 목적이 있다. 먼저, 신속한 객체감지에 적합한 1단계 기반 검출기 중 주요 딥러닝 모델인 SSD-512, RetinaNet, YOLOv3를 후보 모델로 선정하였다. 이 방법들은 1단계 기반 검출기 방식을 적용한 모델로서 객체 인식 분야에 널리 이용되고 있다. 이 모델들은 객체 인식 처리방식의 구조와 빠른 연산의 장점으로 인해 객체 인식 분야에 널리 사용되고 있으나 재난관리에서의 적용은 초기 단계에 머물러 있다. 본 연구에서는 피해감지에 가장 적합한 모델을 찾기 위해 다음과 같은 과정을 거쳤다. 먼저, 재난에 의한 건물의 피해 정도 감지를 위해 재난에 의해 손상된 건물로 구성된 xBD 데이터셋을 활용하여 초고해상도 위성영상을 훈련시켰다. 다음으로 모델 간의 성능을 비교·평가하기 위하여 모델의 감지 정확도와 이미지 처리속도를 정량적으로 분석하였다. 학습 결과, YOLOv3는 34.39%의 감지 정확도와 초당 46개의 이미지 처리속도를 기록하였다. RetinaNet은 YOLOv3보다 1.67% 높은 36.06%의 감지 정확도를 기록하였으나, 이미지 처리속도는 YOLOv3의 3분의 1에 그쳤다. SSD-512는 두 지표에서 모두 YOLOv3보다 낮은 수치를 보였다. 대규모 재난에 의해 발생한 피해 정보에 대한 신속하고 정밀한 수집은 재난 대응에 필수적이다. 따라서 본 연구를 통해 얻은 결과는 신속한 지리정보 취득이 요구되는 재난관리에 효과적으로 활용될 수 있을 것이라 기대한다.
In the past decades, complain about ground vibration and noise induced by pile driving has been quickly increased. Because of that, auger The role of train has expanded as mass transportation according to the increase of train passenger. The train operation personnel are more emphasis on the safety of train operation due to the increase of train's role. The reason is that the train transports many people daily. So, if there is natural disaster, such as earthquake, flood, high temperature, and so on, it will become disaster. Therefore, this paper introduces and proposes wayside detection system, which can be helpful for the safety assurance of train operation.
본 논문은 실내공기질 측정인자들의 화재감지 경향성 측정을 통한 화재감지 활용 가능성에 관한 기초 연구이다. 공기질 측정인자들의 화재감지 경향성을 측정하기 위해 연기감지기 감도시험기를 이용한 작동실험과 UL 268에서 규정하고 있는 종이화재실험을 진행하였다. 연기감지기 감도시험기를 이용한 작동실험 및 UL 268 종이화재실험에 측정된 각각의 측정값을 교차 대입한 결과 공기질 측정기(IAQ) S1의 경우 PM 10(평균값제외), HCHO(평균값 및 최대값 제외), IAQ S2의 경우 PM 1.0, PM 2.5, PM 10, 연소가스분석기(CGA)의 경우 CO(평균값 및 최대값 제외)가 모든 실험 조건에서 연기발생에 따른 측정값의 변화를 통해 경향성을 관찰할 수 있었다. 특히, 본 실험 조건에서 측정되는 인자들 중 적응성이 가장 우수한 PM 10 및 CO는 화재감지 인자로 활용 가능할 것으로 생각된다.
In this paper, authors will develop the quick and precise remote controller of automatic fire detection equipment (P-type one-class receiver) based on information communication technology (IT). The remote controller detects the fire and disaster in the building automatically and quickly and then activates the facilities to extinguish the fire and disaster, monitoring such situation in a real time through wire-wireless communication network. The proposed remote controller is applied a programmable logic device (PLD) micom. of one-chip type which is small size and lightweight and also has highly sensitive-precise reliabilities. The one-chip type PLD micom. analyzes digital signals from sensors, then activates fire extinguishing facilities for alarm and rapid suppression in a case of fire and disaster. The detected data is also transferred to a remote situation room through wire-wireless network of RS232c and bluetooth communication, and then the situation room sends an emergency alarm signal. The automatic fire detection equipment (AFDE) based on IT will minimize the life and wealth loss while prevents fire and disaster.
본 논문에서는 4차 산업혁명을 기반으로 한 스마트 재난안전관리 전 과정에 적용하여 사고나 재난으로부터 인간 사회 경제 환경 피해 등을 최소화하고 빅데이터를 활용한 위험예측 및 위험징후 모니터링 기술에 의한 예측평가와 재난정보수집분석 및 현장상황 실시간 감지 분석에 의한 5세대 통신시스템의 예방, 가상현실과 증강현실을 활용한 몸으로 기억하는 교육과 훈련에 의한 대비, 재난안전관리 의사결정 지원시스템의 인공지능에 의한 대응, 정찰 탐색 및 방재 구호에 위한지능형로봇에 의한 복구와 피해규모 분석 현장상황 공유하기 위한 무인항공기를 활용한 조사 분석의 스마트 재난안전관리 대응체계 구축 전략방안을 제시하였다.
Landsat 위성은 지구표면을 장기간 관측한 대표적인 광학위성으로 재난 대비/복구 모니터링, 토지 이용 변화, 변화 탐지, 시계열 모니터링 등의 장기적인 변화에 활용하기 적합한 위성이다. 본 연구에서는 간단하고 효율적으로 구름을 탐지 및 제거하기 위해 QA밴드를 이용하여 구름 및 구름 그림자를 탐지하였다. 그 다음, 참조영상의 화소값을 직접 참조하는 것이 아닌 복원을 수행할 영상 내 화소값으로 복원을 수행하는 SSG 알고리즘을 통해 영상의 결측영역을 복원하였다. 본 연구를 통하여 지표를 관측하는 기존의 가시광선 영역뿐만 아니라 열 파장대역의 다양한 토지피복 상태의 정보를 복원하여 정량·정성적으로 평가함으로써 변형된 SSG 알고리즘의 활용 가능성을 제시하고자 하였다.
Landsat 위성영상은 재난 피해 지역에 대해 주기적이며 광역적인 관측이 가능하여 재난 피해분석, 재난 모니터링 등 활용도가 증가하고 있다. 하지만 광학위성영상 특성상 구름으로 인한 결측된 영역으로 인해 주기적인 재난 모니터링에는 한계가 있어 결측된 영역의 복원 연구가 필요하다. 본 연구에서는 Landsat 8호 영상 취득 시 제공되는 QA밴드를 이용하여 구름 및 구름그림자를 탐지 및 제거하고, STARFM 알고리즘을 통해 제거된 영역의 영상 복원을 수행하였다. 복원된 영상은 기존의 영상 복원 방법으로 복원된 영상과 MLC 기법을 통해 정확도를 비교하였다. 그 결과, STARFM으로 인한 복원방법이 전체정확도 89.40%로, 기존의 영상 복원 방법보다 효율적인 복원방법임을 확인하였다. 따라서 본 연구결과를 통해 향후 Landsat 위성영상을 이용한 재난분석 수행 시 활용도를 높일 수 있을 것으로 기대된다.
최근 딥러닝(deep learning) 인공지능 기반의 컴퓨터 비전 분야는 각종 영상분석 분야에서 화제로 떠오르고 있다. 본 연구에서는 딥러닝 기반의 여러 이미지 인식 알고리즘 중 이미지 내에서 객체를 검출하는 데 사용되는 Faster R-CNN 알고리즘을 이용하여 화재 이미지에서 불꽃을 검출하고자 한다. 학습 과정에서 소량의 데이터셋을 통한 화재검출 정확도 향상을 위해 이미지 오그멘테이션(image augmentation) 기법을 이용하고, 이미지 오그멘테이션을 6가지 유형별로 나누어 학습하여 정확도, 정밀도, 검출률을 비교하였다. 그 결과, 이미지 오그멘테이션의 종류가 늘어날수록 검출률이 상승하지만, 다른 객체 검출 모델들의 일반적인 정확도와 검출률의 관계와 마찬가지로 오검출율 또한 10%에서 최대 30%까지 증가하게 됨을 확인하였다.
본 연구는 재해를 줄이고 철저한 대비를 하기 위하여 재난에 관한 정보를 체계적으로 수집 및 분석하고 이를 활용 할 수 있는 소방방재 또는 정보시스템이 요구되고 있다. 도시방재관리시스템이란 관점에 있어서 도시건물의 센서네트워크 환경의 방재 및 피난대피 유도시스템 모델 구축을 통한 효과 및 개선방안을 고찰하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.