• Title/Summary/Keyword: Directional element

Search Result 225, Processing Time 0.024 seconds

Formative Elements of the Directional Sign System for the Effective Information Transmission of the Shopping Mall Complex (효과적 정보전달을 위한 대형쇼핑몰 유도사인 시스템 조형요소에 관한 연구)

  • 이유경;백진경
    • Archives of design research
    • /
    • v.17 no.1
    • /
    • pp.373-382
    • /
    • 2004
  • Large sized buildings have proliferated in the modern world in order to solve problems caused by the growth of cities, and this trend has lead to diversity in style and utilization of interiors. In particular, wayfinding within the shopping mall for a customer is a common problem, so if customers do not have to face these navigational problems and could find the way more easily, then shopping mall or the store can expect much better profits. Therefore, directional sign system that can provide accurate and speedy information for customers with diversified ages, gender and knowledge is necessary. Firstly, the definition and element of all directional sign are analyzed through the existing literature survey. The elements are based on the practical elements and six categories such as type, pictogram, color, layout, form, and location were considered. Secondly, directional signs in large underground shopping mall was considered, and the speciality of the underground shopping mall was investigated, and finally top three underground shopping malls was analyzed. Thirdly, through the questionnaire, an objective appraisal of directional signs and problems was developed, and following possible improvement was suggested. This study has its own limitations since it is only applicable to the specific locations, however, directional designs will be useful in other types of buildings as well. Through the continuous studies of the users' psychology, these kinds of studies will be related to the environmental characteristics of various places.

  • PDF

A Numerical Analysis Study for Estimation of Ultimate Bearing Capacity and An Analysis of the High Capacity Bi-directional Pile Load Tests of the Large-diameter Drilled Shafts (대구경 현장타설말뚝의 대용량 양방향 말뚝재하시험 분석 및 극한지지력 추정을 위한 수치해석 연구)

  • Nam, Moonsuk;Kim, Sangil;Hong, Seokwoo;Hwang, Seongchun;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.63-72
    • /
    • 2011
  • The high capacity bi-directional pile load test is an optimum pile load test method for high-rised buildings. Especially, a high pressure and double-acting bi-directional pile load testing, a special type of the high capacity bi-directional pile load test, is the most practical way to overcome limitations of loading capacities and constraints of field conditions, which was judged to be a very useful test method for requiring high loading capacities. Total of 2 high capacity bi-directional pile load tests(P-1 and P-2) were conducted in high-rised building sites in Korea. Based on the field load test results, the sufficiency ratio of loading capacities to design loads for P-1 and P-2 were 3.3 and 2.1, respectively. For P-2, the load test could not verify the design load if 1-directional loads applied slightly smaller than the actual applied load. Also, high capacity bi-directional pile load tests were difficult to determine an ultimate state of ground or piles, although the loads were applied until their maximum loads. Hence, finite element analyses were conducted to determine their ultimate states by calibrating and extrapolate with test results.

Design of the Dual-Band Electrical Beam Tilting Array Antenna with Bi-Directional Directivity (양방향 지향성을 갖는 이중 대역 전기적 빔 틸팅 배열 안테나 설계)

  • Jeon, Hoo-Dong;Heo, Soo-Young;Ko, Ji-Hwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.7
    • /
    • pp.612-619
    • /
    • 2016
  • In this paper, a dual band electrical beam tilting array antenna with bi-directional directivity is designed. Radiating element operates at dual-resonance frequencies and is designed as planar dipole using PCB. In order to tilt the main beam, the phase delay line is designed by use of only the phase shifting line of a $50\Omega$ microstrip line for broadband. The designed antenna has tilting angle of $0^{\circ}$ to ${\pm}8^{\circ}$. For validation of the designed antenna specification, the array antenna is fabricated and the performances are measured. Comparison between theory and experiment shows good agreement.

A Dynamic Response Analysis of Very Large Offshore Structures in Multi-Directional Irregular Waves (다방향 불규칙파중의 초대형 해양구조물의 동적응답해석)

  • Goo, J.S.;Jo, H.J.;Kim, K.T.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.2
    • /
    • pp.90-103
    • /
    • 1997
  • A numerical procedure is described for predicting the motion and structural responses of the very large floating offshore structures supported by multiple 3-D floating bodies of arbitrary shape in multi-directional irregular waves. The developed numerical approach taking into account of the hydrodynamic interactions among the multiple floating bodies is based on a combination of the 3-D source distribution method, the wave interaction theory, the finite element method and the spectral analysis method to get the significant values of the dynamic responses in the multi-directional irregular waves. The effects of wave interactions and directionality on the dynamic responses of a very large offshore structure, which is semisubmersible ring type, are numerically examined.

  • PDF

Seismic fragility analysis of sliding artifacts in nonlinear artifact-showcase-museum systems

  • Liu, Pei;Li, Zhi-Hao;Yang, Wei-Guo
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.333-350
    • /
    • 2021
  • Motivated by the demand of seismic protection of museum collections and development of performance-based seismic design guidelines, this paper investigates the seismic fragility of sliding artifacts based on incremental dynamic analysis and three-dimensional finite element model of the artifact-showcase-museum system considering nonlinear behavior of the structure and contact interfaces. Different intensity measures (IMs) for seismic fragility assessment of sliding artifacts are compared. The fragility curves of the sliding artifacts in both freestanding and restrained showcases placed on different floors of a four-story reinforced concrete frame structure are developed. The seismic sliding fragility of the artifacts within a real-world museum subjected to bi-directional horizontal ground motions is also assessed using the proposed IM and engineering demand parameter. Results show that the peak floor acceleration including only values initiating sliding is an efficient IM. Moreover, the sliding fragility estimate for the artifact in the restrained showcase increases as the floor level goes higher, while it may not be true in the freestanding showcase. Furthermore, the artifact is more prone to sliding failure in the restrained showcase than the freestanding showcase. In addition, the artifact has slightly worse sliding performance subjected to bi-directional motions than major-component motions.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Dynamic Voltage Compensation System Using Bi-directional DC/DC Converter of Electric Double-Layer Capacitor (EDLC의 양방향 DC/DC Converter를 이용한 동적 전압보상시스템)

  • Shon, Jin-Geun;Lee, Sang-Cheol;Lee, Gong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.108-111
    • /
    • 2007
  • A novel voltage sag compensator with hi-directional DC/DC converter of Electric double layer capacitor is proposed. Recently, the double-layer capacitor which is drawn attention as a new energy storage element has a lot of advantage such as no maintenance, long lifetime and quick charge/discharge characteristics with large current. This DC/DC converter is used to control the charging current to the double-layer capacitor and also used to keep the DC link voltage constant for discharge of the double-layer capacitor. Therefore, the proposed DC/DC converter has the high-efficiency controller, dynamic compensator of voltage sag is driven by this converter. Finally, experimental results show the validity of the control scheme and the ability of the dynamic voltage compensator.

  • PDF

Dynamic behavior of TLP's supporting 5-MW wind turbines under multi-directional waves

  • Abou-Rayan, Ashraf M.;Khalil, Nader N.;Afify, Mohamed S.
    • Ocean Systems Engineering
    • /
    • v.6 no.2
    • /
    • pp.203-216
    • /
    • 2016
  • Over recent years the offshore wind turbines are becoming more feasible solution to the energy problem, which is crucial for Egypt. In this article a three floating support structure, tension leg platform types (TLP), for 5-MW wind turbine have been considered. The dynamic behavior of a triangular, square, and pentagon TLP configurations under multi-directional regular and random waves have been investigated. The environmental loads have been considered according to the Egyptian Metrological Authority records in northern Red sea zone. The dynamic analysis were carried out using ANSYS-AQWA a finite element analysis software, FAST a wind turbine dynamic software, and MATLAB software. Investigation results give a better understanding of dynamical behavior and stability of the floating wind turbines. Results include time history, Power Spectrum densities (PSD's), and plan stability for all configurations.

Design and Fabrication of Traveling Wave Type Bi-directional Ultrasonic Linear Motors (진행파를 이용한 쌍방향 초음파 리니어 모터 설계 및 제작)

  • 한우석;김연보;노용래
    • The Journal of the Acoustical Society of Korea
    • /
    • v.18 no.8
    • /
    • pp.25-31
    • /
    • 1999
  • This paper describes design and fabrication of a new bi-directional ultrasonic linear motor working by means of a traveling wave. With the finite element method, we design and verify validity of the new structure, and determine its optimal structure, material, size, and boundary conditions for proper generation of the traveling wave. Based on the results, a prototype of the motor has been fabricated and characterized, which thereby proves practical applicability of the new structure.

  • PDF

A General Rigorous Analysis of Arbitrary-shaped Multiaperture-coupled Directional Coupler Between Two Dissimilar Rectangular Waveguides Crossing with an Arbitrary Angle (임의의 각도로 틀어진 서로 다른 두 도파관 사이의 임의 형상 다중 공동으로 결합되는 방향성 결합기의 해석)

  • 박종국;남상옥
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.23 no.7
    • /
    • pp.1764-1769
    • /
    • 1998
  • The FE-BI (finite element- boundary integral) method is used for the characterization of an arbitrary-shaped multiaperture-coupled directional coupler between two retangular waveguides crossing with an arbitrary angle. The method is shown to be much more effective than the ordinary FEM for the structures under consideration. the computation time is compared with that of the ordinary FEM. The results of other papers for Moreno coupler are compared with the theoretical prediction and a good agreement is obtained.

  • PDF