• Title/Summary/Keyword: Directional Interpolation

Search Result 77, Processing Time 0.031 seconds

An Efficient Deinterlacing Algorithm Using New Edge-Directed Interpolation (새로운 에지 방향 보간법을 이용한 효율적인 디인터레이싱 알고리듬)

  • Kim, Min-Ki;Jeong, Je-Chang
    • Journal of Broadcast Engineering
    • /
    • v.12 no.2
    • /
    • pp.185-192
    • /
    • 2007
  • The interpolation is used in many image processing applications such as image enhancement, de-interlacing/scan-rate conversion, wavelet transforms based on the lifting scheme, and so on. Among these, de-interlacing and scan-rate conversion are proposed for the digital TV applications. The de-interlacing algorithm can be classified into two categories. The first one uses only one field, called intra-field de-interlacing, and the other uses multiple field, called inter-field de-interlacing. In this paper, an efficient de-interlacing algorithm using spatial domain information is proposed far the interpolation of interlaced images. By efficiently estimating the directional correlations, improved interpolation accuracy has been achieved. In addition, the proposed method is simply structured and is easy to implement. Extensive simulations conducted for various images and video sequences have shown the efficacy of the proposed method with significant improvement over the previous intra-field do-interlacing methods in terms of the objective image quality as well as the subjective image quality.

Frame-rate Up-conversion using Hierarchical Adaptive Search and Bi-directional Motion Estimation (계층적 적응적 탐색과 양방향 움직임 예측을 이용한 프레임율 증가 방법)

  • Min, Kyung-Yeon;Park, Sea-Nae;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.3
    • /
    • pp.28-36
    • /
    • 2009
  • In this paper, we propose a frame-rate up-conversion method for temporal quality enhancement. The proposed method adaptively changes search range during hierarchical motion estimation and reconstructs hole regions using the proposed bi-direction prediction and linear interpolation. In order to alleviate errors due to inaccurate motion vector estimation, search range is adaptively changed based on reliability and for more accurate, motion estimation is performed in descending order of block variance. After segmentation of background and object regions, for filling hole regions, the pixel values of background regions are reconstructed using linear interpolation and those of object regions are compensated based on the proposed hi-directional prediction. The proposed algorithm is evaluated in terms of PSNR with original uncompressed sequences. Experimental results show that the proposed algorithm is better than conventional methods by around 2dB, and blocky artifacts and blur artifacts are significantly diminished.

Edge-Preserving Directional Regularization Technique for Disparity Estimation and Intermediate View Reconstruction of Stereoscopic Images (경계-보존 방향성 평활화를 이용한 양안 영상의 변이 추정과 중간 시점 영상의 재구성)

  • 김미현;강문기;이철희;최윤식;손광훈
    • Journal of Broadcast Engineering
    • /
    • v.4 no.1
    • /
    • pp.59-67
    • /
    • 1999
  • In this paper, we study two important topics in stereoscopic image communication system. One is a disparity estimation (DE) method to obtain the depth information of a scene at the transmitter and the other is an intermediate view reconstruction(IVR) method at the receiver. We propose a new DE method using an edge-preserving directional regularization technique. The proposed DE method smooths disparity vectors in smooth regions and preserves edges without over-smoothing problem. It provides better reconstructed stereoscopic images and improved coding efficiency than the existing regularization techniques. In addition. we propose a new IVR method using interpolation and extrapolation techniques. The proposed IVR method preserves edge regions as well as occlusion regions well. Thus. it gives better intermediate views than the existing IVR methods.

  • PDF

Frame Interpolation using Bilateral Motion Refinement with Rotation (회전을 고려한 정밀 양방향 움직임 예측 프레임 보간 기법)

  • Lee, Min-Kyu;Park, Hyun-Wook
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.135-142
    • /
    • 2009
  • Since hold-type display systems have been developed, frame-rate up conversion (FRUC) is an essential technique to improve the temporal resolution in the display. FRUC improves the temporal resolution by interpolating one or multiple intermediate frames between two adjacent frames. In this paper, a new frame-rate up-conversion algorithm based on bilateral motion refinement with rotation is proposed. First, we perform bi-directional motion estimation between adjacent two frames to obtain a motion vector for each block. Then, we apply a modified median filtering to motion vectors for outlier-rejection and motion field smoothing. The filtered motion vectors are updated by the bilateral motion refinement with rotation. After the refined motion vector is obtained, the intermediate frame is generated by applying the overlapped block motion compensation (OBMC). Experimental results show that the proposed algorithm provides a better performance than the previous methods subjectively and objectively.

Fast Content Adaptive Interpolation Algorithm Using One-Dimensional Patch-Based Learning (일차원 패치 학습을 이용한 고속 내용 기반 보간 기법)

  • Kang, Young-Uk;Jeong, Shin-Cheol;Song, Byung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.1
    • /
    • pp.54-63
    • /
    • 2011
  • This paper proposes a fast learning-based interpolation algorithm to up-scale an input low-resolution image into a high-resolution image. In conventional learning-based super-resolution, a certain relationship between low-resolution and high-resolution images is learned from various training images and a specific high frequency synthesis information is derived. And then, an arbitrary low resolution image can be super-resolved using the high frequency synthesis information. However, such super-resolution algorithms require heavy memory space to store huge synthesis information as well as significant computation due to two-dimensional matching process. In order to mitigate this problem, this paper presents one-dimensional patch-based learning and synthesis. So, we can noticeably reduce memory cost and computational complexity. Simulation results show that the proposed algorithm provides higher PSNR and SSIM of about 0.7dB and 0.01 on average, respectively than conventional bicubic interpolation algorithm.

A New Directionally Weighted Demosaicing (방향성을 고려한 새로운 디모자이킹)

  • Jung, Tae-Young;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1004-1009
    • /
    • 2010
  • ost digital cameras use single sensor array with color filter array to reduce size and cost. However images taken by single sensor array have only one color component per pixel, to obtain a color image missing two color components need to be reconstructed. This reconstructing process is called as demosaicking. This paper propose a new directional demosaicking method and proposed method achieves better image quality with enhanced weighting function. With comparing objective and subjective performance, we show proposed method achieves better performance than the conventional methods.

Multi-resolution Lossless Image Compression for Progressive Transmission and Multiple Decoding Using an Enhanced Edge Adaptive Hierarchical Interpolation

  • Biadgie, Yenewondim;Kim, Min-sung;Sohn, Kyung-Ah
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.6017-6037
    • /
    • 2017
  • In a multi-resolution image encoding system, the image is encoded into a single file as a layer of bit streams, and then it is transmitted layer by layer progressively to reduce the transmission time across a low bandwidth connection. This encoding scheme is also suitable for multiple decoders, each with different capabilities ranging from a handheld device to a PC. In our previous work, we proposed an edge adaptive hierarchical interpolation algorithm for multi-resolution image coding system. In this paper, we enhanced its compression efficiency by adding three major components. First, its prediction accuracy is improved using context adaptive error modeling as a feedback. Second, the conditional probability of prediction errors is sharpened by removing the sign redundancy among local prediction errors by applying sign flipping. Third, the conditional probability is sharpened further by reducing the number of distinct error symbols using error remapping function. Experimental results on benchmark data sets reveal that the enhanced algorithm achieves a better compression bit rate than our previous algorithm and other algorithms. It is shown that compression bit rate is much better for images that are rich in directional edges and textures. The enhanced algorithm also shows better rate-distortion performance and visual quality at the intermediate stages of progressive image transmission.

Deinterlacing Using Multi-Directional Edge Information (다각도의 에지 정보를 이용한 디인터레이싱)

  • Lee, Dong-Wook;Kang, Mun-Bong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.2
    • /
    • pp.92-96
    • /
    • 2010
  • Deinterlacing methods are usually divided into inter-field deinterlacing and intra-field deinterlacing. The most common method of intra-field deinterlacing is the linear method which uses line doubling or line averaging. There are also some edge-enhancement methods such as ELA(Edge Based Line Average) and modified ELA. However, the linear interpolation generates edge blurring or staircase artifacts. The methods using ELA or modified ELA show poor deinterlacing at various types of edges because of insufficient edge information in a certain direction. This paper presents an intra-field deinterlacing algorithm that considers the interpolation based on edges in 7 directions and an edge line in the horizontal direction. It demonstrates better picture quality by reducing the staircase phenomenon of object in the conventional methods.

Fault-Tolerant Control System for Unmanned Aerial Vehicle Using Smart Actuators and Control Allocation (지능형 액추에이터와 제어면 재분배를 이용한 무인항공기 고장대처 제어시스템)

  • Yang, In-Seok;Kim, Ji-Yeon;Lee, Dong-Ik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.10
    • /
    • pp.967-982
    • /
    • 2011
  • This paper presents a FTNCS (Fault-Tolerant Networked Control System) that can tolerate control surface failure and packet delay/loss in an UAV (Unmanned Aerial Vehicle). The proposed method utilizes the benefits of self-diagnosis by smart actuators along with the control allocation technique. A smart actuator is an intelligent actuation system combined with microprocessors to perform self-diagnosis and bi-directional communications. In the event of failure, the smart actuator provides the system supervisor with a set of actuator condition data. The system supervisor then compensate for the effect of faulty actuators by re-allocating redundant control surfaces based on the provided actuator condition data. In addition to the compensation of faulty actuators, the proposed FTNCS also includes an efficient algorithm to deal with network induced delay/packet loss. The proposed algorithm is based on a Lagrange polynomial interpolation method without any mathematical model of the system. Computer simulations with an UAV show that the proposed FTNCS can achieve a fast and accurate tracking performance even in the presence of actuator faults and network induced delays.

An Efficient Error Concealment Method Using Difference Values of Border Pixels (경계 화소의 차분값을 이용한 효과적인 에러 은닉 방법)

  • Hyun, Seung-Hwa;Kim, Sang-Soo;Kim, Yoo-Shin;Eom, Il-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.143-150
    • /
    • 2009
  • In this paper, we present a spatial domain error concealment method to recover a lost block in intra-coded frames. The edge directions of the lost block are estimated by the difference values of the border pixels of the accurately received blocks. The lost block is interpolated according to the estimated edge directions. Our algorithm can adaptively recover a lost block according to the estimated edge direction. The distances between pixels are used as weights for interpolation. In spite of the low computational cost, the proposed method outperforms the previous methods in objective and subjective qualities.