• Title/Summary/Keyword: Direct-shear test

Search Result 423, Processing Time 0.022 seconds

Analysis on the Influence of Groundwater Level Changes on Slope Stability using a Seismic Refraction Survey in a Landslide Area (지구물리탐사를 이용한 산사태지역의 지하수위에 따른 안정성 해석)

  • Lee, Kyoung-Mi;Kim, Hyun;Lee, Jae-Hyuk;Seo, Young-Seok;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.545-554
    • /
    • 2007
  • Landslides is mainly induced by a heavy rainfall, earthquake ground motion, and some other factors like soil mechanics, morphological-geological factors etc. Since the starting point of the failure seemed to be originated at a construction site in the study, it is meaningful to find out the relationship between the landslide and the construction. For this study, the slope failure factor was examined carefully to see that the original natural slope had vulnerability and that the complex ground had unstability changed by construction. A field survey was conducted on the original ground surface and filled-up ground. A laboratory test was also conducted to determine the geomechanical properties of soil samples. 2D and 3D limit equilibrium analysis with changing groundwater level were conducted at the failure depth using a seismic refraction survey. The result shows that the factor of safety is similar stability under all condition, but unstable under saturated condition.

A Study on the Engineering Characteristic of scoria in Jeju-Do (제주도산 송이의 공학적 특성에 관한 연구)

  • Chun, Byung-Sik;Kim, Dong-Hoon;Kim, Young-Hun;Lee, Dong-Yeup
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1630-1637
    • /
    • 2008
  • Jeju-do is a island formed by the volcanic activity and has more than 360 volcanic cones distributed widely along the long axis of the elliptically shaped island. The volcanic cones consist mainly of scoria, so called "Song-I" in the local dialect. In this study the chemical and soil mechanical properties of scoria being very different from those of the inland were investigated with the various tests. In the sieve-passing test the particle size of scoria had more than 10 of uniformity coefficient and gradation coefficient of 1 ~ 3, showing relatively homogenous distribution. Based on the uniformity classification, scoria was assorted into GW. In the large scale direct shear tested for measuring the mechanical strength of scoria the internal friction angle of red scoria was $37^{\circ}$ and that of black scoria was $36^{\circ}$. This indicated that there was no difference in the mechanical strength between two types of scoria. On the other hand, red and black scoria had $1.24{\times}10^{-3}$ to $3.55{\times}10^{-2}$ cm/sec of k values for the static water level permeability, thus being classified into a coarse or fine sand as compared with that representing the saturated soil. They also had 1.411 to $1.477\;g/cm^3$ of notably low $r_{dmax}$ values for the compaction test as compared with common soil, which was considered to be due to their low specific gravity and high porosity. In conclusion, the soil mechanic properties of scoria obtained from this study are thought to be very helpful for reducing lots of trial and error happening in the civil engineering construction.

  • PDF

The Study on the Effect of Density and Moisture Content on Shear Strength of Soils (흙의 밀도(密度)와 함수비(含水比)가 전단강도(剪斷强度)에 미치는 영향(影響))

  • Cho, Seung-Seup;Kang, Sin-Up;Kang, Yea-Mook;Kim, Seung-Wan;Kim, Soung-Rai
    • Korean Journal of Agricultural Science
    • /
    • v.5 no.1
    • /
    • pp.15-28
    • /
    • 1978
  • It has been known that the shear strength of soil is an important design parameter for the foundation of structures, the retaining walls, the slope failures and so forth. In this study, the shear test was performed by using the direct shear apparatus under various degree of the moisture content and the density of the sample soils. The results of the study were summarized as follows; 1. The shear strength of soil increased with increase in the dry density of soil, and at the same level of density of the sample the shear strength of soil showed large values on a good grading of the sample. 2. The cohesion of the soil varied directly with the dry density of it, however the internal friction angle of soil was not affected by the dry density of tile sample. 3. The shear strength of sample varied inversly with the moisture content of it, and this phenomenon was apparent on a good grad ing of sample. 4. The cohesion of soil showed maximum value when the moisture content of the soil reached optimum level and the internal friction angle decreased with increase in the moisture content of it. These phenomena were very obvious on a good grading sample, SDC-1. 5. The cohesion of the soil decreased with increase in void ratio of the sample, but the internal friction angle of the sample didn't show such tendency.

  • PDF

Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test (진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성)

  • Park Byung-Ki;Jeon Seokwon
    • Tunnel and Underground Space
    • /
    • v.16 no.1 s.60
    • /
    • pp.58-72
    • /
    • 2006
  • In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

A Study on Self-Hardening Characteristics of Coal Ash by Mixing Ratio of Fly Ash and Bottom Ash (비회와 저회의 배합비에 따른 석탄회의 자경성에 관한 연구)

  • Shin, Woonggi;Lim, Daesung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.85-91
    • /
    • 2010
  • As enormous construction projects of land development are carried out around Korea, useful construction materials are needed to perform the construction projects. However, there are no more enough of fill and reclamation materials in our country. That is why the coal ash is expected to be utilized as an alternative material. Since the coal ash has the characteristics of a pozzolan and a selfhardening material, it is adjudged that coal ash has a great possibility to be used as a fill and reclamation material. In this study, grain size analysis, Atterberg limit test, and specific gravity test were performed to examine the physical characteristics of the coal ash about a self-hardening material before utilizing the coal ash in the construction. Compaction test, unconfined compression test, direct shear test, and flexible wall permeability test were conducted to investigate the engineering characteristics according to mixture ratios of fly ash and bottom ash. As a result of the tests, it was confirmed that the mixing ratio 1:1 of fly ash and bottom ash is the most effective to use as a fill and reclamation material. If the mixture of coal ash is used as a backfill material with light weight around structure, it is expected to play a significant role in reducing earth pressure on the back of the structure. As the age of the mixture of coal ash goes by, it intends to decrease the coefficient of permeability. As described above, the coal ash should be considered as an alternative material of fill and reclamation materials since the result of the tests indicates that the coal ash is suitable to a useful material on the construction design.

The study on the Crushability of Weathered Cranite Soils (화강암질 풍화토의 파쇄성에 관한 연구)

  • 도덕현;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.21 no.2
    • /
    • pp.81-103
    • /
    • 1979
  • The weathered granite soil involves problems in its stability in soil structures depending upon the reduction of soil strength due to the water absorption, crushability, and content of colored mineral and feldspar. As an attemt to solve the problems associated with soil stability, the crushability of weathered granite soil was investigated by conducting tests such as compaction test, CBR test, unconfined compression test, direct shear test, triaxial compression test, and permeability test on the five soil samples different in weathering and mineral compositions. The experimental results are summarized as follows: The ratio of increasing dry density in the weathered granite soil was high as the compaction energy was low, while it was low as the compaction energy was increased. The unconfined compressive strength. and CBR value were highest in the dry side rather than in the soil with the optimum moisture content, when the soil was compacted by adjusting water content. However, the unconfined compressive strength of smples, which were compacted and oven dried, were highest in the wet side rather than in soil with the optimum moisture content. As the soil becomes coarse grain, the ratio of specific surface area increased due to increased crushability, and the increasing ratio of the specific surface area decreased as the compaction energy was increased. The highest ratio of grain crushability was attained in the wet side rather than in the soil with the optimum moisture content. Such tendency was transforming to the dry side as the compaction energy was increased. The effect of water on the grain crushability of soil was high in the coarse grained soil. The specific surface area of WK soil sample, when compacted under the condition of air dried and under the optimum moisture content, was constant regardless of the compaction energy. When the weathered granite soil and river sand with the same grain size were compacted with low compaction energy, the weathered granite soil with crushability had higher dry density than river sand. However, when the compaction energy reached to certain point over limitation, the river sand had higher dry density than the weathered granite soil. The coefficient of permeability was lowest in the wet side rather than in the optimum moisture content, when the soil was compacted by adjusting soil water content. The reduction of permeability of soil due to the compaction was more apparent in the weathered granite soil than in the river sand. The highly significant correlation coefficient was obtained between the amount of particle breakage and dry density of the compacted soil.

  • PDF

Improvement Effect and Field Application of Dynamic Replacement Using Crushed Rock (암버력 매립층의 동치환공법 현장 적용성 및 개량효과에 관한 연구)

  • Lee, In-Hwan;Lee, Chul-Hee;Shin, Eun Chul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.1-13
    • /
    • 2019
  • The purpose of this study is to examine the effect of soft ground improvement by dynamic replacement with utilizing crushed rock. In order to understand the ground improvement effect when applying dynamic replacement method with crushed rock, the laboratory test and field test were performed. The internal friction angle and apparent cohesion were derived through direct shear test. The dynamic replacement characteristics were identified by analyzing the weight, drop, and number of blows needed for dynamic replacement. Through the field plate bearing test and density test, the bearing capacity and settlement of the improved ground were measured, and the numerical analysis were conducted to analyze the behavior of the improved ground. In this study, it proposes modified soil experimental coefficient(CDR) to 0.3~0.5 in the dynamic replacement method with crushed rock. Also when applying the dynamic replacement method using crushed rock, the particle size range is less than 100 mm, D90 is less than 80 mm and D15 is more than 30 mm.

A Study on the Engineering Characteristics of Power Plant Coal Ash (화력발전소 부산물인 석탄회의 공학적 특성에 관한 연구)

  • Kuk, Kilkeun;Kim, Hyeyang;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.25-34
    • /
    • 2010
  • In this study characteristics for reclaimed ash was studied to enlarge the usage of reclaimed ash which is reaching to 72 million ton producted from whole thermal power plants in South Korea. Fly ash and bottom ash are reclaimed separately at some of thermal power plants. However, typically bottom ash and fly ash are mixed when they are buried at most of the thermal power plant, as a result the engineering characteristics of ponded ash are not investigated properly. In order to investigate the engineering characteristics of the ponded ash, laboratory tests were performed with ponded ash and fly ash from youngheung and samcheonpo thermal power plants. Specific gravity, unit weight, and grain size analysis test were fulfilled to evaluate the physical characteristics and triaxial permeability test, direct shear test, unconfined compressive strength test, compaction test were performed to evaluate the mechanical characteristics. And also engineering characteristics of coal ash from anthracite and Bituminous thermal power plants were compared and studied respectively. As a result of the study, it was confirmed that using coal ash from Bituminous thermal power plants can be effective in the place where lightweight materials are required and using coal ash from anthracite thermal power plants can be effective as backfill material which require higher permeability. Finally, it was confirmed that fly ash from youngheung thermal power plants which has the lowest permeability among the tested material is suitable for a field requiring impermeable material.

A Feasibility Study on the Use of Liner and Cover Materials Using Sewage Sludge (하수슬러지의 차수재 및 복토재로의 이용타당성에 관한 연구)

  • 유남재;김영길;박병수;정하익
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.43-71
    • /
    • 1999
  • This research is an experimental work of developing a construction material using municipal wastewater sludge as liner and cover materials for waste disposal landfill. Weathered granite soil and flyash, produced as a by-product in the power plant, were used as the primary additives to improve geotechnical engineering properties of sludge. For secondary additives, bentonite and cement were mixed with sludge to decrease the permeability and to increase the shear strength, respectively. Various laboratory test required to evaluate the design criteria for liner and cover materials, were carried out by changing the mixing ratio of sludge with the additives. Basic soil properties such as specific gravity, grain size distribution, liquid and plastic limits were measured to analyze their effects on permeability, compaction, compressibility and shear strength properties of mixtures. Laboratory compaction tests were conducted to find the maximum dry densities and the optimum moisture contents of mixtures, and their effectiveness of compaction in field was consequently evaluated. Permeability tests of variable heads with compacted samples, and the stress-controlled consolidation tests with measuring permeabilities of samples during consolidation process were performed to obtain permeability, and to find the compressibility as well as consolidational coefficients of mixtures, respectively. To evaluate the long term stability of sludges, creep tests were also conducted in parallel with permeability tests of variable heads. On the other hand, for the compacted sludge decomposed for a month, permeability tests were carried out to investigate the effect of decomposition of organic matters in sludges on its permeability. Direct shear tests were performed to evaluate the shear strength parameters of mixed sludge with weathered granite, flyash and bentonite. For the mixture of sludge with cement, unconfined compression tests were carried out to find their strength with varying mixing ratio and curing time. On the other hand, CBR tests for compacted specimen were also conducted to evaluate the trafficability of mixtures. Various test results with mixtures were assessed to evaluate whether their properties meet the requirements as liner and cover materials in waste disposal landfill.

  • PDF

Geotechnical Characterization of Artificial Aggregate made from Recycled Resources of Gwangyang Bay Area as a Drainage Material (광양만권 순환자원으로 제조된 배수재용 인공골재의 지반공학적 특성)

  • Kim, Youngsang;Kim, Wonbong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.10
    • /
    • pp.49-57
    • /
    • 2013
  • Recently, recycling of the industrial by-products has been an important issue of the Yeosu bay, where large industrial complex is located. Major industrial by-products which are produced from Yeosu industrial complex area are phosphogypsum and flyash, which are about 82% and 10% of the 1.6 million tons industrial by-products. Moreover since the Yeosu industrial complex is located at seaside, phosphogypsum has been pointed as cause of serious environmental contaminant from the regional society. Therefore recycling study can't be delayed anymore. In this paper, artificial aggregate was manufactured by non-sintering process from industrial byproducts - e.g., phosphogypsum and slag - as a geotechnical drainage material. To show the feasibility of the artificial aggregate as a geotechnical drainage material, geotechnical experiments including particle size analysis, permeability test, and large scale direct shear test were carried out. Test results show that the permeability of the artificial aggregates range from $6.94{\times}10^{-1}cm/sec$ to $8.86{\times}10^{-1}cm/sec$, which is much larger value than those are required for the drainage material from the construction specification in Korea, and the friction angle of the artificial aggregate is as large as that of sand in water immersion conditions. From the test results, it was concluded that artificial aggregate made from industrial by-products can be used successfully as a geotechnical drainage material.