Dynamic Frictional Behavior of Saw-cut Rock Joints Through Shaking Table Test

진동대 시험에 의한 편평한 암석 절리면의 동적 마찰거동 특성

  • 박병기 (서울대학교 에너지자원신기술연구소) ;
  • 전석원 (서울대학교 지구환경시스템공학부)
  • Published : 2006.02.01

Abstract

In recent years, not only the occurrences but the magnitude of earthquakes in Korea are on an increasing trend and other sources of dynamic events including large-scale construction, operation of hi띤-speed railway and explosives blasting have been increasing. Besides, the probability of exposure fir rock joints to free faces gets higher as the scale of rock mass structures becomes larger. For that reason, the frictional behavior of rock joints under dynamic conditions needs to be investigated. In this study, a shaking table test system was set up and a series of dynamic test was carried out to examine the dynamic frictional behavior of rock joints. In addition, a computer program was developed, which calculated the acceleration and deformation of the sliding block theoretically based on Newmark sliding block procedure. The static friction angle was back-calculated by measuring yield acceleration at the onset of slide. The dynamic friction angle was estimated by closely approximating the experimental results to the program-simulated responses. As a result of dynamic testing, the static friction angle at the onset of slide as well as the dynamic friction angle during sliding were estimated to be significantly lower than tilt angle. The difference between the tilt angle and the static friction angle was $4.5\~8.2^{\circ}$ and the difference between the tilt angle and the dynamic friction angle was $2.0\~7.5^{\circ}$. The decreasing trend was influenced by the magnitude of the base acceleration and inclination angle. A DEM program was used to simulate the shaking table test and the result well simulated the experimental behavior. Friction angles obtained by shaking table test were significantly lower than basic friction angle by direct shear test.

암반구조물의 규모가 점차 대형화됨에 따라 암반이 자유면에 노출되는 확률이 높아지고 있으며, 최근 들어 지진이나 발파, 고속철도의 운행에 의한 진동 등으로 야기되는 동적 하중의 발생빈도가 증가하는 추세이므로 동적 하중조건 하에서 암반 불연속면의 거동 특성 파악을 위한 연구의 필요성이 증대되고 있다. 본 연구에서는 자유면에 노출된 블록의 동적 거동을 모사할 수 있도록 경사면 진동대 시험장비를 제작하였고, 다양한 동적 하중 조건하에서 편평한 화강암 절리면의 마찰 거동 특성을 분석하였다. 경사시험을 통해서 구한 한계 경사각과 진동하중 하에서의 임계가속도로부터 역산한 정적 마찰각을 비교한 결과 동하중 하에서 정적마찰각이 $4.5\~8.2^{\circ}$ 정도 낮게 산정되는 경향을 보였다. 이론적인 암석 블록의 마찰 거동을 표현하는 블록 거동 프로그램을 작성하고, 진동하중에 의해 미끄러지는 암석 블록의 가속도 및 변위 계측결과를 개발된 프로그램에 의한 결과와 비교하여 암석 절리면의 동적 마찰각을 산정하였는데 동적 마찰각 역시 한계 경사각에 비해 $2.0\~7.5^{\circ}$ 정도 감소하는 결과를 얻었다. 동하중 하에서 측정된 정적 마찰각과 동적 마찰각은 가해진 가속도의 크기나 진폭 등의 하중 특성과 기하조건에 따라 달라지는 경향을 보였다. 개별요소 프로그램을 이용하여 진동대 시험을 모사하였는데, 계측결과 및 개발된 프로그램에 의한 결과와 비교적 잘 일치하였다. 진동대 시험에 의한 동적, 정적 마찰각은 직접전단시험에 의한 기본 마찰각보다 현저히 작게 산정되었다.

Keywords

References

  1. Augello, A.J., 1997, Seismic response of solid-waste landfills, Ph.D. Dissertation, University of California, Berkeley, U.S.A
  2. Barton, N., 1973, Review of a new shear strength criterion for rock joints, Engineering Geology 7, 287-332 https://doi.org/10.1016/0013-7952(73)90013-6
  3. Gazatas, G., Uddin, N., 1994, Permanent deformation on pre-existing sliding surfaces in dams, Journal of Geotechnical Engineering 120.11, 2041-2061 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:11(2041)
  4. Jaeger, J.C., 1971, Friction of rocks and stability of rock slopes, Geotechnique 21, 97-134 https://doi.org/10.1680/geot.1971.21.2.97
  5. Kramer, S.L., 1996, Geotechnical earthquake engineering, Prentice Hall, New Jersey
  6. Kramer, S.L., Smith, M.W., 1997, Modified Newmark model for seismic displacements of compliant slopes, Journal of Geotechnical and Geoenvironmental Engineering 123.7, 635-644 https://doi.org/10.1061/(ASCE)1090-0241(1997)123:7(635)
  7. Lin, J.S., Whitman, R.V., 1983, Decoupling approximation to the evaluation of earthquake induced plastic slip in earth dams, Earthquake Engineering and Structural Dynamics 11, 667-67 https://doi.org/10.1002/eqe.4290110506
  8. Newmark, N.M., 1965, Effects of earthquakes on dams and embankments, Geotcchnique 15, 139-160 https://doi.org/10.1680/geot.1965.15.2.139
  9. Oden, J.T., Martins, J.A.C., 1985, Models and computational methods for dynamic friction phenomena, Computer Methods in Applied Mechanics and Engineering 52, 527-634 https://doi.org/10.1016/0045-7825(85)90009-X
  10. Patton, F.D., 1966, Multiple modes of shear failure in rock, Proceedings of the 1 st Congress of the ISRM, Lisbon, 509-513
  11. Wartman, J., 1999, Physical model studies of seismically induced deformation in slopes, Ph.D. Dissertation, University of California, Berkeley, U.S.A
  12. Van, L., 1991, Seismic deformation analyses of earth dams: A simplified method, Soil mechanics laboratory report No. SML 91-01, California Institute of Technology