• Title/Summary/Keyword: Direct-numerical simulation

Search Result 454, Processing Time 0.035 seconds

BRIEF REVIEW OF LATEST DIRECT NUMERICAL SIMULATION ON POOL AND FILM BOILING

  • Kunugi, Tomoaki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.8
    • /
    • pp.847-854
    • /
    • 2012
  • Despite extensive research efforts, the mechanism of the nucleate boiling phenomena is still not clear. A direct numerical simulation of the boiling phenomena is one of the promising approaches in order to clarify its heat transfer characteristics and discuss their mechanism. Therefore, many DNS procedures have been developed based on recent highly advancing computer technologies. This brief review focuses on the state of the art in direct numerical simulation of the pool boiling phenomena over the past two decades. In this review, the fundamentals of the boiling phenomena and the bubble departure and micro-layer models are briefly introduced, and then the numerical procedures for tracking or capturing interface/surface shape such as the front tracking method, level set method, volume of fluid treatments, and other methods (Lattice Boltzmann method, phase-field method and so on) are briefly reviewed.

An Evaluation of a Direct Numerical Simulation for Counterflow Diffusion Flames (대향류 확산화염에 대한 직접수치모사의 검증)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.74-81
    • /
    • 2001
  • A direct numerical simulation (DNS) was applied to nonpremixed counter-flow diffusion flames between oxidizer and fuel ducts. The objective of this study is to evaluate the numerical method for simulation of axisymmetric counterflow diffusion flames. Effects of computational domain size and grid size were scrutinized, and then the method was applied to air-methane diffusion flames. The results at zero gravity conditions were in good agreement with those obtained by the one-dimension flame code OPPDIF. It was confirmed thai the numerical method is applicable to the diffusion flames at the normal gravity conditions since the results clearly showed the effects of buoyancy and velocity ratio.

  • PDF

Direct Numerical Simulations of Turbulent Boundary Layer using OpenFOAM and Adapted Mesh (OpenFOAM과 어댑티드 격자를 이용한 난류 경계층의 직접 수치 모사)

  • Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.53 no.3
    • /
    • pp.210-216
    • /
    • 2016
  • Direct numerical simulations of a spatially developing turbulent boundary layer on a flat plate have been performed to verify the applicability of OpenFOAM and adapted mesh with prism layers to turbulent numerical simulation with high fidelity as well as provide a guideline on numerical schemes and parameters of OpenFOAM. Reynolds number based on a momentum thickness at inlet and a free-stream velocity was Reθ=300. Time dependent inflow fields with near-wall turbulent structures were generated by a method of Lund et al. (1998), which was to extract instantaneous velocity fields from an auxiliary simulation with rescaled and recycled velocities at inlet. To ascertain the statistical characteristics of turbulent boundary layer, the mean profiles of streamwise velocity and turbulent intensities obtained from structured and adapted meshes were compared with the previous data.

The Flow Analysis of Past Flow a Circular Cylinder By Direct Numerical Simulation (DNS에 의한 원주후류에 대한 유동해석)

  • ;Mamoru TANAHASHI;Toshio MIYAUCHI
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2001.05a
    • /
    • pp.52-57
    • /
    • 2001
  • Laminar two-dimensional time-dependent flow past a circular cylinder is numerically investigated using direct numerical simulation for the low Reynolds number (Re=164∼280). The higher-order finite difference scheme is employed for the spatial distributions along with the second order Adams-Bashforth and the first order backward-Euler time integration. The convection term is applied by the 7th order up wind scheme and the pressure and viscosity terms are applied by the 4th order central difference. The grid system makes use of the regular grid system and it is generated by an equation. The calculated results of drag coefficients, lift coefficients, pressure distributions, and vorticity contours and other information are compared with experimental and numerical ones. These results obtained by the present DNS show good agreement with the previous studies.

  • PDF

Flow solutions around rectangular cylinders: The question of spatial discretization

  • Corsini, Roberto;Angeli, Diego;Stalio, Enrico;Chibbaro, Sergio;Cimarelli, Andrea
    • Wind and Structures
    • /
    • v.34 no.1
    • /
    • pp.151-159
    • /
    • 2022
  • The aerodynamics of blunt bodies with separation at the sharp corner of the leading edge and reattachment on the body side are particularly important in civil engineering applications. In recent years, a number of experimental and numerical studies have become available on the aerodynamics of a rectangular cylinder with chord-to-thickness ratio equal to 5 (BARC). Despite the interest in the topic, a widely accepted set of guidelines for grid generation about these blunt bodies is still missing. In this work a new, well resolved Direct Numerical Simulation (DNS) around the BARC body at Re=3000 is presented and its results compared to previous DNSs of the same case but with different numerical approaches and mesh. Despite the simulations use different numerical approaches, mesh and domain dimensions, the main discrepancies are ascribed to the different grid spacings employed. While a more rigorous analysis is envisaged, where the order of accuracy of the schemes are kept the same while grid spacings are varied alternately along each spatial direction, this represents a first attempt in the study of the influence of spatial resolution in the Direct Numerical Simulation of flows around elongated rectangular cylinders with sharp corners.

LARGE EDDY SIMULATION OF TURBULENT FLOWS AND DIRECT/DECOUPLED SIMULATIONS OF AEROACOUSTICS - PRESENT STATUS AND FUTURE PROSPECT -

  • Kato, Chisachi
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.2-4
    • /
    • 2010
  • Due to rapid progress in the performance of high-end computers, numerical prediction of fluid flow and flow-induced sound is expected to become a vital tool for aero- and hydro- dynamic design of various flow-related products. This presentation focuses on the applications of large-scale numerical simulations to complex engineering problems with a particular emphasis placed on the low-speed flows. Flow field computations are based on a large eddy simulation that directly computes all active eddies in the flow and models only those eddies responsible for energy dissipations. The sound generated from low-speed turbulent flows are computed either by direct numerical simulation or by decoupled methods, according to whether or not the feedback effects of the generated sound onto the source flow field can be neglected. Several numerical examples are presented in order to elucidate the present status of such computational methods and discussion on the future prospects will also be given.

  • PDF

Direct Numerical Simulation of Turbulent new Around a Rotating Circular Cylinder at Low Reynolds Number (회전하는 원형단면 실린더 주위의 저 레이놀즈수 난류유동에 대한 직접수치모사)

  • Hwang Jong-Yeon;Yang Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1083-1091
    • /
    • 2005
  • Turbulent flow around a rotating circular cylinder is investigated by Direct Numerical Simulation. The calculation is performed at three cases of low Reynolds number, Re=161, 348 and 623, based on the cylinder radius and friction velocity. Statistically strong similarities with fully developed channel flow are observed. Instantaneous flow visualization reveals that the turbulence length scale typically decreases as Reynolds number increases. Some insight into the spacial characteristics in conjunction with wave number is provided by wavelet analysis. The budget of dissipation rate as well as turbulent kinetic energy is computed and particular attention is given to the comparison with plane channel flow.

Direct Numerical Simulation of Channel Flow with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1543-1551
    • /
    • 2003
  • The present study investigates turbulent flows subject to strong wall injection in a channel through a Direct Numerical Simulation technique. These flows are pertinent to internal flows inside the hybrid rocket motors. A simplified model problem where a regression process at the wall is idealized by the wall blowing has been studied to gain a better understanding of how the near-wall turbulent structures are modified. As the strength of wall blowing increases, the turbulence intensities and Reynolds shear stress increase rapidly and this is thought to result from the shear instability induced by the injected flows at the wall. Also, turbulent viscosity grows rapidly as the flow moves downstream. Thus, the effect of wall-blowing modifies the state of turbulence significantly and more sophisticated turbulence modeling would be required to predict this type of flows accurately.

Direct Numerical Simulation of Turbulent Scalar Transport in a Channel with Wall Injection

  • Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.597-605
    • /
    • 2004
  • Turbulent temperature field in a channel subject to strong wall injection has been investigated via direct numerical simulation technique. These flows are pertinent to internal flows inside hybrid rocket motors. A simplified model problem where a regression process at the propellant surface is idealized by wall injection has been investigated to understand how the temperature field is modified. The effect of strong wall injection displaces thermal boundary layer away from the wall and this causes a sharp drop of friction temperature. Turbulent diffusivity and dissipation time scale for temperature field are found to show large variations in the streamwise direction under application of wall blowing. It is, thus, expected that more sophisticated turbulence models would be required to predict the disturbed temperature field accurately.