• Title/Summary/Keyword: Direct-drive DC motor

Search Result 45, Processing Time 0.022 seconds

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

A Study on PLL Speed Control System of DC Servo Motor for Mobile Robot Drive (자립형 이동로봇 구동을 위한 직류 서보전동기 PLL 속도제어 시스템에 관한 연구)

  • 홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.3
    • /
    • pp.60-69
    • /
    • 1993
  • The speed control associated with dc servo motors for direct-drive applications of mobile robot is considered in this study. Robot is moved by power wheeled steering of two dc servo motors mounted to it. In order to cooperate with micro-computer and to achieve the high-performance operation of dc servo motor, speed control system is composed of a digital Phase Locked Loop and H-type drive circuit. And the motor is driven by Pulse Width Modulations. In controlling PWM, it is modified to compose of H-type drive circuit with feedback diodes and switching transistor and design of control sequence so that it may show linear characteristics. As a result, speed characteristics of motor showed linear features. In order to get data on design of PLL control system, the parameters of 80[W[ motor & robot device is measured by simple software control. The PLL speed control system is schemed and designed by leaner drive circuit and measured parameters. A complete speed control system applied to 80[W] dc servo motor showed good linearity, stability and high response. Also, it is verified that the PLL speed control system has good compatibility as a mobile robot driver.

  • PDF

AC-DC Zeta Converter for Power Quality Improvement in Direct Torque Controlled PMSM Drive

  • Singh Bhim;Singh B.P.;Dwivedi Sanjeet
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.146-162
    • /
    • 2006
  • This paper deals with the analysis, design and implementation of an AC-DC Zeta converter in discontinuous current mode (DCM) of operation used for power quality improvement at AC mains in direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drives. The designed Zeta converter feeds a direct torque controlled PMSM drive system. Modeling and simulation is carried out in a standard PSIM software environment. Test results are obtained on the developed prototype Zeta converter using DSP ADMC401. The results obtained demonstrate the effectiveness of the Zeta converter in improving power quality at AC mains in the PMSM drive system.

Direct Drive PM Motor Design for Next Generation Locomotive (차세대 전동차용 직구동형 영구자석 전동기 설계기술)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1860-1865
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM(Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. In this paper, the design of IPMSM satisfying driving specifications for the direct drive has been performed using the advanced F.E.M.

  • PDF

BRUSHLESS DC MOTOR FOR A DIRECT DRIVE WASHING MACHINE (직결식 세탁기용 BRUSHLESS DC MOTOR)

  • Lee, Jin-Won;Kim, Chang-Joon;Sung, Bu-Hyun;Won, Jong-Hwa;Yi, You-Shin
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.406-408
    • /
    • 1996
  • This paper describes the BLDC motor which is applicated for a top front loading domestic washing machine. This motor is adopted direct drive washing machine without gear-belt-pulley system. Because gear box is removed, machine volume and noise are reduced. Moreover mechanical troubles in gear box are removed. Realization of variable speed region through of PWM control and high speed is able to efficient washing and spinning.

  • PDF

Development of a Novel Direct-Drive Tubular Linear Brushless Permanent-Magnet Motor

  • Kim, Won-jong;Bryan C. Murphy
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.3
    • /
    • pp.279-288
    • /
    • 2004
  • This paper presents a novel design for a tubular linear brushless permanent-magnet motor. In this design, the magnets in the moving part are oriented in an NS-NS―SN-SN fashion which leads to higher magnetic force near the like-pole region. An analytical methodology to calculate the motor force and to size the actuator was developed. The linear motor is operated in conjunction with a position sensor, three power amplifiers, and a controller to form a complete solution for controlled precision actuation. Real-time digital controllers enhanced the dynamic performance of the motor, and gain scheduling reduced the effects of a nonlinear dead band. In its current state, the motor has a rise time of 30 ms, a settling time of 60 ms, and 25% overshoot to a 5-mm step command. The motor has a maximum speed of 1.5 m/s and acceleration up to 10 g. It has a 10-cm travel range and 26-N maximum pull-out force. The compact size of the motor suggests it could be used in robotic applications requiring moderate force and precision, such as robotic-gripper positioning or actuation. The moving part of the motor can extend significantly beyond its fixed support base. This reaching ability makes it useful in applications requiring a small, direct-drive actuator, which is required to extend into a spatially constrained environment.

The study of servo control in ultrasonic motor

  • ;C.B. Besant
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.04a
    • /
    • pp.158-165
    • /
    • 1991
  • DC servo motors have small torques compared to their weight. In order to reduce the speed and increase the output torque of the DC motor, a gear box is commonly used. The use of a gearbox, however, imposes limitations onmany applications because of the backlash and the reduction in transmission efficiency. Furthemore, the elastic deformation or the compliance of the gearbox decreases the accuracy of the servo mechanism and the stability of the system. In view of the many disadvantages in using the gearbox, a more effective solution has to be found. The solution is the direct drive mechanism. There are many kinds of direct drive motors. I will consider the ultrasonic motor in particular.

Investigation on Direct Driven IPMSM for Next Generation Locomotive (차세대 전동차용 직접 구동용 매입형 영구자석 동기전동기의 특성 고찰)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.398-403
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM (Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. Where the wheel is directly dirven by the traction motor. In this paper, the investigation on IPMSM satisfying driving specifications for the direct drive has been performed using the advanced FEM.

A study on the Development of Sensorless Driver for Electric Compressor Brushless DC Motor (전동식 컴프레서 브러시리스 직류 전동기용 센서리스 드라이브 개발에 관한 연구)

  • Cho, Jung-Hun;Park, Sung-Jun
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.374-375
    • /
    • 2019
  • In this paper, In the whole industry, there is a tendency to replace brushless motors with brushless motors because of the high rate of failure in DC motors with brushes. Accordingly, many methods for driving a brushless motor have been developed and studied. In order to drive the brushless motor, it is essential to know the information about the rotor position of the motor. However, it is not possible to use a position sensor for rotor disconnection due to the structure of an electric compressor brushless DC motor. In this paper, we investigate the rotor position of the motor by using the counter electromotive force included in the voltage of the terminal made by Y connection by using the resistance of each phase without using Hall sensor or encoder generally used to detect the rotor position. A sensorless drive system for a square wave brushless direct current (DC) motor is proposed. To do this, we propose a method to detect the rotor position from the analyzed terminal voltage waveform by performing terminal voltage analysis of each phase for 3-phase, 2-exciton unipolar PWM.

  • PDF