• Title/Summary/Keyword: Direct-Drive

Search Result 592, Processing Time 0.033 seconds

Investigation on Direct Driven IPMSM for Next Generation Locomotive (차세대 전동차용 직접 구동용 매입형 영구자석 동기전동기의 특성 고찰)

  • Kim, Min-Seok;Park, Ji-Seong;Kim, Dae-Kwang;Kim, Jung-Chul;Jung, Sang-Yong
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.4
    • /
    • pp.398-403
    • /
    • 2008
  • The propulsion for locomotive application has changed from the DC motor system to the induction motor system. Although the induction motor system has almost reached the stage of maturity, this system also needs to be changed to the PM motor system for the direct drive without using reduction gear. Thus, the IPMSM (Interior buried Permanent Magnet Synchronous Motor) has been adopted to meet the locomotive driving specification. Where the wheel is directly dirven by the traction motor. In this paper, the investigation on IPMSM satisfying driving specifications for the direct drive has been performed using the advanced FEM.

Adaptive Robust Control for 2 Aaxis Direct Drive SCARA Robots (2축 직접 구동 SCARA 로봇에 대한 적응 견실제어)

  • 이지형;강철구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.642-647
    • /
    • 1993
  • In general, systems contain uncertain elements in the real world; these may be parameters, constant or varying, that are unknown or imperfectly known. When the uncertainty is assumed to satisfy the matching condition and to be cone-bounded, Y.H. Chen[81 proposed an adaptive robust control algorithm which introduced adaptive scheme for a design parameter into robust deterministic controls. In this paper, the above control algorithm is applied to the position tracking control of 2 DOF direct drive SCARA robots, and simulation and experimental studies are conducted to verify the control algorithm and to evaluate control performance.

  • PDF

Adaptive Fuzzy Sliding Mode Control of a Direct Drive Motor (Direct Drive 모터의 적응 퍼지 슬라이딩 모드제어)

  • Kim, Young-Tae;Lee, Dong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.10
    • /
    • pp.17-24
    • /
    • 1999
  • 본 논문에서는 새로운 적응 퍼지 슬라이딩 모드제어 방법을 제시하였다. 제어기는 정확한 수확적인 모델이 없이도 점근적으로 시스템을 안정화시킬 수 있으며 적분항을 포함시킴으로서 정상상태에서의 오차를 좀 더 줄일 수가 있다. 직접구동모터는 감쇄기어가 없어서 부하나 외란 토크의 변화에도 모터 역학에 직접적으로 많은 영향을 줄 수가 있다. 제어기의 실제성능을 확인하기 위하여 불확실한 부하나 변소를 갖는 직접구동모터의 위치제어에 적용하였다.

  • PDF

Structural optimization for rotor frame of 750kW gearless type PMSG (750kW Gearless PM 동기발전기 로터프레임 경량화)

  • Hong, Hyeok-Soo;Park, Jin-Il;Ryu, Ji-Yune
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.286-289
    • /
    • 2008
  • Mass of generator is one of the most important characteristic value especially direct drive type wind turbine. This paper introduce how to decease mass of generator rotor frame without declining generator performance. To obtain optimal design of rotor frame, sensitivity analysis using Taguchi method and RSM(response surface method) are have been performed.

  • PDF

A Novel Direct Instantaneous Pressure Control of Hydraulic Pump System with SR Drive

  • Liang, Jianing;Kim, Tae-Hyoung;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.208-210
    • /
    • 2007
  • This paper proposes a novel direct instantaneous pressure control(DIPC) of hydraulic pump system with SR drive. And it has very simple control structure, because it doesn’t use any speed and torque control for adjusting pump pressure. The hysteresis band of pressure and proper switching rules can make the actual pump pressure to be constant with fast dynamic response. Therefore, the proposed DIPC method can control of hydraulic pump pressure steadily with fast dynamic response.

  • PDF

A Novel High-Performance Strategy for A Sensorless AC Motor Drive

  • Lee, Dong-Hee;Kwon, Young-Ahn
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.3
    • /
    • pp.81-89
    • /
    • 2002
  • The sensorless AC motor drive is a popular topic of study due to the cost and reliability of speed and position sensors. Most sensorless algorithms are based on the mathematical modeling of motors including electrical variables such as phase current and voltage. Therefore, the accuracy of such variables largely affects the performance of the sensorless AC motor drive. However, the output voltage of the SVPWM-VSI, which is widely used in sensorless AC motor drives, has considerable errors. In particular, the SVPWM-VSI is error-prone in the low speed range because the constant DC link voltage causes poor resolution in a low output voltage command and the output voltage is distorted due to dead time and voltage drop. This paper investigates a novel high-performance strategy for overcoming these problems in a sensorless ac motor drive. In this paper, a variation of the DC link voltage and a direct compensation for dead time and voltage drop are proposed. The variable DC link voltage leads to an improved resolution of the inverter output voltage, especially in the motor's low speed range. The direct compensation for dead time and voltage drop directly calculates the duration of the switching voltage vector without the modification of the reference voltage and needs no additional circuits. In addition, the proposed strategy reduces a current ripple, which deteriorates the accuracy of a monitored current and causes torque ripple and additional loss. Simulation and experimentation have been performed to verify the proposed strategy.

Optimal Design of Hydraulic System Using the Complex Method (컴플렉스법에 의한 유압시스템의 최적 설계)

  • Lee S.R.;Lee Y.B.;Park J.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.1 no.4
    • /
    • pp.1-8
    • /
    • 2004
  • The optimum design parameters of several hydraulic systems are obtained using the complex method that is one kind of constrained direct search method. First, the parameters of lead-lag controller of the direct drive servovalve is designed using the complex method to satisfy the steady-state error requirement. Second, the optimum locating point of hydraulic cylinder Is determined to minimize the cylinder force in the operation range of rotational sluice gate. For the third application case, the optimum piston area of hydraulic cylinder is determined to minimize the man power to elevate the manually operated sluice gate.

  • PDF