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1. Introduction capability of adaptive control, and the disturbance
rejection of sliding mode control are collected in
Since its inception in 1965"" and particularly one control strategy, namely Fuzzy Sliding Mode

within the past decade, fuzzy logic has been the
subject of significant debate and analysis among
scientists with a large array of backgrounds from
psychology.
Although, through numerous simulations and applied

medicine to engineering and to

examples, fuzzy logic has been shown to be a
powerful technique in integrating human knowledge
and intuition for control of complex systems, there
is not vet an adequatc systematic method of
rigorous analysis and design.

Recently, several researchers have combined the
three concepts of fuzzy logic, adaptive control, and
sliding mode this the

of fuzzy logic systems, the adaptation

control. In combination,

robustness

Control. Furthermore, rigorous analysis of this type
of control strategy has proven to be stable. Wang!”
introduced the concept of fuzzy basis functions and
the stability

analysis of adaptive fuzzy controllers for nonlinear

used mathematical framework for

systems. This mathematical representation of fuzzy
rule-sets was later used by others to derive rigorous
stability results for fuzzy systems. The fuzzy logic

Bl are capable of uniformly approximating

systems
any nonlinear function over compact input space to
In [3],

mode control law is described for nonlinear systems

any degree of accuracy. a fuzzy sliding

by setting an upper bound for system uncertainty.

The fuzzy logic rule-set is used to estimate the
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unknown upper bound. Lin" changes the the other simulation, the desired trajectory is a

defining parameters of the membership functions in

the fuzzy rule-set according to a sliding mode
adaptive routine.
Under normal applications of fuzzy sliding

mode control, the presence of system disturbances

may result in steady state error since the error

vector is deviated from the sliding surface. This
paper presents a new approach to adaptive fuzzy

sliding mode control of systems with more
robustness to system disturbances. The proposed
control scheme does not require an accurate

mathematical model of the system. It incorporates
the
climinates steady state error. The feedback controlled
to be stable. The feedback
is added so that the differentiation

an integral term in sliding surface which

loop is guaranteed

derivative term

of the Lyapunov function is assured negative
definite. As a result, asymptotic stability is proven.
To wverify the actual performance of the

proposed controller, it is then applied to a position
control of a direct drive motor with payload and
have
since they have no

parameter uncertainty. Direct drive motors

received increasing attention
backlash or dead zone which are caused by gears.
Since they are used in high-precision robot and

machine tool applications, they must have high

resistance to external disturbances. However, since
direct drive motors do not have reduction gears, the
variation of the load and the disturbance torque
directly influence in  motor

parameter changes

dynamics. In fact, the absence of gear reduction
leads to great sensitivity for the motor to variations
in the load inertia. As a result, a linear controller
cannot provide a good response under varying load
Variable System(VSS) type

controlm, Bang-Bang and

conditions. Structure

self-tuning controlm,
adaptive control™ have been proposed to handle
such problems. The paper describes adaptive fuzzy
sliding mode control method for control of a direct
drive motor for more robustness to system
disturbances.

Two sets of simulations are performed. In one

simulation, the desired trajectory is a set point. In
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sinusoidal function. In both of these simulations, the
parameters of the direct drive motor J(motor and
load inertia) and D(coefficient of viscous friction)
are allowed to vary. Yet, very good tracking results
are observed.

The paper is organized as follows. In section 2,
the basic configuration of fuzzy logic systems is
described”. Section 3 illustrates the proposed sliding
mode control law as applied to control of a direct
drive motor. Two sets of simulations with different
initial conditions and desired

trajectories  are

illustrated in section 4.

2. Fuzzy Logic Systems and Fuzzy Basis
Functions

A fuzzy logic knowledge base consists of a set
of fuzzy IF-THEN rules which themselves consist of
a set of linguistic variables associated with inputs
and outputs and fuzzy operators such as AND and
OR. Since a multi-output system can always be
separated into a group of single output systems,
without loss of generality, let's consider a
Multi-Input  Single-Output(MISO) rule structure such

as below,

RV:IF g is Al'and....and x, 5 A,
(h
THEN y is B'
where y= (3, x,) € VCR" is compact
and ye WCR
and output of the fuzzy logic system respectively.

A,-l and B’ are labels of the fuzzy sets in

represent the linguistic inputs

and W -tespectively. ¢ =1,2...,# corresponds to

is the number of

the input number where #

inputs, and / =1,2,... m corresponds to the rule

number where 1 is the number of rules.
There are many alternatives to implementation
of fuzzy rules. In this paper, the product form of

t-norm fuzzy implication is used.
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(3) T
*p A )k 5 (y) The above equation can be stated as,
T &
where % denotes the t-norm product operator Wx)=0"&x) (8)
and corresponds to the conjunction "and" in the where
linguistic rule-representation. 4= ;/1 U L
— 1 m T
Let A, be an arbitrary fuzzy set in V', then d )= (£ (2),... £"(2)
an
each fuzzy rule determines a fuzzy set, A, R (”,
in R based on the following sup-star compositional ﬂ
. I '(7{;')
rule of inference, ! N i '
()= %)
2 (I w4 ()
ta, g (¥)=sup eolua, (x)%* . -
4) where the £ (x) is called the fuzzy basis
K ok - (2,3)] function, @ are adjustable parameters, and Mg
All  m fuzzy rules are then combined to are given membership functions.
determine a final fuzzy through the fuzzy It has been proved [2,10] that fuzzy logic
disjunction: system in the form of eq.7) are universal
approximators. So the above fuzzy logic system is
Ea, R ... g () capable of uniformly approximating any nonlinear
(p)< _ ( )(5) function over compact input space to any degree of
= o .+ o
Ba g+ Fu, goly accuracy.
where +denotes  the  t-conorm  which s
commonly defined as fuzzy union, algebraic sum, 3. Adaptive Fuzzy Sliding Mode Control Law
or bounded sum, In this paper, however, the

center-average defuzzifier is used to aggregate rules.

The center-average-defuzzifier is defined as

" 3 e (3
NX/= _
ﬁl(ﬂ A, R( y[ ))

where?}l is the point in the R at which

(6)

i i (y) achieves its maximum value (assume that

,uB/(}[):l). In [2], it is shown that using

center-average-defuzzifier, product inference, and

singleton defuzzifier, the above equation reduces to,
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Let's consider the dynamic model of a direct

drive motor as below,

X JETTH (10)
=Ax)+bu

where,

J - Inertia moment of the system load and rotor
D - Coefficient of viscous friction term

x - Angular displacement of the motor (output)
u - Output torque of the motor (control input)

The state vector

=)= ()" eR
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Fig. 1 A block diagram of the adaptive fuzzy sliding mode control system

is available for measurement. The function Ay)
is not exactly known. The control gain b is
also not exactly known, but it is lower bounded by
a known p;, that is 0< b, < b, b= b,+4b,
Now, let e(t) = x(#)—yx,(¢) where x,/t) is

the desired trajectory. Then, the sliding surface may
be defined by,

s=e +ke+ky (1)

where

I
y= fo e(7)dr (12)

vallows including an integration term to reduce
steady state error. By taking a derivative of both
sides of eq.(11),

é +k1 é +k2€
=3 ()= %)tk et ke (13)
=Rx)+bu— x.(t)+k e + ke
If the function Ayx) and the gain b are

known, we can easily obtain the optimal sliding
mode controller [9]. Due to the poor knowledge of

Ax) and & we replace Ayx) by the fuzzy logic

system f(x|@) which is in the form of eq.(8)
and consider the term k; - sgn(s) to reduce the

unknown disturbance.
The resulting controller is as follows.

ult) = —;[—?(xlﬁw 0
(14)

— ke — ke ““%;kgl . sgn(s)~71[k4s

which reduces to,

u(t) = 711[—?<x|ﬁ>+ 24(t) s

- kl e e kge_ kg . sgn(s) _'k48]
Where the term kys is added so that V(2 is

assured more negative. Figure 1 illustrates a

realization of the proposed adaptive fuzzy sliding
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The

rapid switching on the sliding surface. It depends on

mode control  law term k., - sgn(s)  gives
the sampling frequency. Direct drive motors cause
large chattering at this sampling frequency. In order
to reduce the chattering, we use the technique that

makes the term sgn(s) continuous as follows,

T
sgn(s) Is|+o (16)
where >0,
Substituting eq.(15) into eq.(13) yields,
§ =F()+(b,+ab) 1= F(x10)
’ (17)
+ xlt)—Fe—k e——k3—s—k s]
Xd 1 2 Isl+6 1
reduces to,
S =) =7 (218) —ks+LF
” (18)
__[lk N
b; 3 ISI+6
where
F=—F(z18)+ xi(t)
_ (19)
—kl e **kge—/ws
Define the minimum approximation error w,
w=f(x)—F(xl6" (20)
where 6" is the optimal parameter. Then,
§=F(z 18 -F 1) +ot+<LF
!
210

b, . s
b7 Tel+a ke

If we choose ? to be the fuzzy logic systems

in the form of eq.(8), then it can be rewritten as

s :QT5(1)+CU+—‘;’)QF
b s 1 22)
_—_b—lkg' lsl+8—k4s

where @ =

basis function ¢q.(9).

"~ 8. and £(y) is the fuzzy

Consider the following Lyapunov function,

V:isz—i—‘l_Qr_Q

2 27 (23)

then

V =ss+ %_@T_Q_

:s(QTE(x)+w+ATII)F
b, s 1 ,7 5 (24)
b, ks Is|+& kys) + r‘Q 2

1 a7 N s
"’T—Q (rs&x)—_6.) bl(k3b BEE)
—Ab- s F -bl * sa))—/e4s2

Choose ks(gain) and § so that it satisfies the

inequality,

> |s(F+ w) (25)

2
s
ks Is|+8
Then
14 <%QT(735(1)—_€L)—/@452 (26)

The

approximation error.

term S is of the order of minimum

Because of  the Universal
Approximation Theorem [2], we can expect that «
should be small. If we choose the adaptive law.

8 =rs&(yx) vy

then we have,

V < = ks (28)
Hence, the asymptotic stability of the proposed
method is guaranteed.

4, Simulation

For the adaptive fuzzy sliding mode control
derived in Section 3, we investigate the performance
of the

conditions in order to show the effectiveness of the

system under practical environmental

21
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proposed controllers. We used parameters for the
6-inch megatorque motor”” which is a popular direct
drive motor. This motor has a resolver which is
used to sense its rotor angle. The dynamic model of
the above direct drive motor is simulated using
Matlab's command "ode23" with a sampling period
of 1 The the

simulations are the following:

ms. parameters used in two

® The reference trajectory for the first simulation:
ra(t) = FTAF—sin A 0<t= 25

in seconds. Initial Condition: ¥(0) =10.0

® The reference trajectory for the second simulation:
xa,(¢) = sin(¢) , 0< ¢<10.0 in seconds.

Initial Conditions: ¥(0) =0.5

2

P4

® Maximum torque = 39.2 N- m

o Rotor inertia = 0.0077 kg - m’

e Coefficient of viscous friction = 0.31 N- s/m

e k=12, ky =36, by =10, ky =5

e 0.01 , » = 100000 , b, = 45
The results of these simulations are shown in
Figures 2 and 4 and show the output tracks the

reference trajectories x,(¢) and yx,(#) very closely.

Figures 3 and 5 show the errors of position angles

for the control system immediately after changing

2

the rotor inertia 0.02 kg - m

friction 0.6 N:s/m at t=1 second.
Figure 6 show phase portait of the trajectory. In
spite of these sudden changes, the adaptive fuzzy
sliding mode controller continues to perform very
well and show that the proposed controller does not
need exact knowledge of the load inertia and the

and the coefficient

of viscous

coefficient of viscous friction.
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5. Conclusion
This paper presents a state feedback sliding
mode fuzzy adaptive control method for position
control of a direct drive motor. The adaptive law
adjusts the parameters of a fuzzy controller which
In
the
sliding surface which eliminates steady state error.

multiply a vector functions.

addition,

of fuzzy basis
It incorporates an integral term in
The proposed control scheme does not require an

accurate mathematical model of the system. The
method is applied to position control of a direct
drive motor with payload and parameter uncertainty.
Since direct drive motors do not have reduction
gears, the variation of the load and the disturbance
torque directly influence parameter changes in motor
dynamics. Two sets of simulations demonstrate that
the error in trajectory following is minimal even
while  introducing in  estimated

large  errors

parameters of the direct drive motor.
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