• Title/Summary/Keyword: Direct torque control (DTC)

Search Result 153, Processing Time 0.031 seconds

A Five-Phase Induction Motor Speed Control System Excluding Effects of 3rd Current Harmonics Component

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.294-303
    • /
    • 2011
  • In this paper an effective five-phase induction motor (IM) and its drive methods are proposed. Due to the additional degrees of freedom, the five-phase IM drive presents unique characteristics for enhancing the torque producing capability of the motor. Also the five-phase motor drives possess many other advantages when compared to traditional three-phase motor drives. Some of these advantages include, reducing the amplitude and increasing the frequency of the torque pulsation, reducing the amplitude of the current without increasing the voltage per phase and increasing the reliability. In order to maximize the torque per ampere, the proposed motor has concentrated winding, the produced back electromotive force (EMF) is almost trapezoidal, and the motor is supplied with the combined sinusoidal plus the third harmonic of the currents. For demonstrating the superior performance of the proposed five-phase IM, the motors are also analyzed on the synchronously rotating reference frame. To supply trapezoidal current waveform and to exclude the effect of the $3^{rd}$ harmonic current, a new control stratagem is proposed. The proposed control method is based on direct torque control (DTC) and rotor flux oriented control (RFOC) of the five-phase IM drives. It is able to reduce the acoustical noise, the torque, the flux, the current, and the speed pulsations during the steady state. The DTC transient merits are preserved, while a better quality steady-state performance is produced in the five phase motor drive for a wide speed range. Experimental results clearly demonstrated a more dynamic steady state performance with the proposed control system.

A Loss Minimization Control Strategy for Direct Torque Controlled Interior Permanent Magnet Synchronous Motors

  • Siahbalaee, Jafar;Vaez-Zadeh, Sadegh;Tahami, Farzad
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.940-948
    • /
    • 2009
  • The main objective of this a paper is to improve the efficiency of permanent magnet synchronous motors (PMSMs) by using an improved direct torque control (DTC) strategy. The basic idea behind the proposed strategy is to predict the impact of a small change in the stator flux amplitude at each sampling period to decrease electrical loss before the change is applied. Accordingly, at every sampling time, a voltage vector is predicted and applied to the machine to fulfill the flux change. The motor drive simulations confirm a significant improvement in efficiency as well as a very fast and smooth response under the proposed strategy.

Input-Output Feedback Linearization of Sensorless IM Drives with Stator and Rotor Resistances Estimation

  • Hajian, Masood;Soltani, Jafar;Markadeh, Gholamreza Arab;Hosseinnia, Saeed
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.654-666
    • /
    • 2009
  • Direct torque control (DTC) of induction machines (IM) is a well-known strategy of these drives control which has a fast dynamic and a good tracking response. In this paper a nonlinear DTC of speed sensorless IM drives is presented which is based on input-output feedback linearization control theory. The IM model includes iron losses using a speed dependent shunt resistance which is determined through some effective experiments. A stator flux vector is estimated through a simple integrator based on stator voltage equations in the stationary frame. A novel method is introduced for DC offset compensation which is a major problem of AC machines, especially at low speeds. Rotor speed is also determined using a rotor flux sliding-mode (SM) observer which is capable of rotor flux space vector and rotor speed simultaneous estimation. In addition, stator and rotor resistances are estimated using a simple but effective recursive least squares (RLS) method combined with the so-called SM observer. The proposed control idea is experimentally implemented in real time using a FPGA board synchronized with a personal computer (PC). Simulation and experimental results are presented to show the capability and validity of the proposed control method.

Modeling and Experimental Verification of ANN Based Online Stator Resistance Estimation in DTC-IM Drive

  • Reza, C.M.F.S.;Islam, Didarul;Mekhilef, Saad
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.550-558
    • /
    • 2014
  • Direct Torque controlled induction motor (DTC-IM) drives use stator resistance of the motor for stator flux estimation. So, stator resistance estimation properly is very important for a stable and effective operation of the induction motor. Stator resistance variations because of changing in temperature make DTC operation difficult mainly at low speed. A method based on artificial neural network (ANN) to estimate the stator resistance online of IM for DTC drive is modeled and verified in this paper. To train the neural network a back propagation algorithm is used. Weight adjustment of neural network is done by back propagating the error signal between measured and estimated stator current. An extensive simulation has been carried out in MATLAB/SIMULINK to prove the efficacy of the proposed stator resistance estimator. The simulation & experimental result reveals that proposed method is able to obtain precise torque and flux control at low speed.

AC-DC Zeta Converter for Power Quality Improvement in Direct Torque Controlled PMSM Drive

  • Singh Bhim;Singh B.P.;Dwivedi Sanjeet
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.146-162
    • /
    • 2006
  • This paper deals with the analysis, design and implementation of an AC-DC Zeta converter in discontinuous current mode (DCM) of operation used for power quality improvement at AC mains in direct torque controlled (DTC) permanent magnet synchronous motor (PMSM) drives. The designed Zeta converter feeds a direct torque controlled PMSM drive system. Modeling and simulation is carried out in a standard PSIM software environment. Test results are obtained on the developed prototype Zeta converter using DSP ADMC401. The results obtained demonstrate the effectiveness of the Zeta converter in improving power quality at AC mains in the PMSM drive system.

A High-Performance Position Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 리럭턴스 동기전동기의 고성능 제어시스템)

  • 김민회;김남훈;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • This paper presents an Implementation of digital high-performance position sensorless control system of Reluctance Synchronous Motor(RSM) drives with Direct Torque Control(DTC). The system consists of stator flux observer, speed and torque estimator, two digital hysteresis controllers, an optimal switching look-up table, Insulated Gate Bipolar Transistor(IGBT) voltage source inverter, and TMS320C31 DSP board. The stator flux observer Is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. In order to prove the suggested sensorless control algorithm for industrial field application, we have some simulation and actual experiment at low and high speed range. The developed high-performance speed control by fully digital system are shown a good response characteristic of control results and high performance features using 1.0[kW] RSM having 2.57 reluctance ratio of $L_d/L_q$.

Direct Touque Control of Induction Motor Using Multi Fuzzy Controller (다중 퍼지제어기를 이용한 유도전동기의 직접 토크제어)

  • Moon, Ju-Hui;Ko, Jae-Sub;Choi, Jung-Sik;Kang, Sung-Jun;Jang, Mi-Geum;Baek, Jung-Woo;Chung, Dong-Hwa
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.585-586
    • /
    • 2010
  • An induction motor operated with a conventional direct self controller(DSC) shows a sluggish response during startup and under changes of torque command. Fuzzy logic controller(FLC) is used in conjunction with DSC to minimize these problems. A FLC chooses the switching states based on a set of fuzzy variables. Flux position, error in flux magnitude and error in torque are used as fuzzy state variables. Fuzzy rules are determinated by observing the vector diagram of flux and currents. This paper proposes hybrid FLC for direct torque control(DTC) of induction motor drives. This controller is controlled speed using hybrid FLC. The performance of the proposed induction motor drive with hybrid FLC is verified by analysis results at various operation conditions.

  • PDF

Network-Based Overhead Crane Control System Using Matrix Converters (매트릭스 컨버터를 사용한 네트워크 기반 천정형 크레인 제어 시스템)

  • Lee, Hong-Hee;Chun, Tae-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • This paper presents supervisor control methods at a matrix converter controlled overhead crane system based on a controller area network (CAN). Four induction motors are used to drive the gantry, trolley, and hoist at he crane and each motor is controlled by the matrix converter with direct torque control (DTC). Both the position control algorithm and the supervisor control system using CAN are introduced. Simulation and experimental results are carried out to verify the performance of position control at the matrix converter controlled crane system.

A Novel Space Vector modulation Scheme and Direct Torque Control for Four-switch BLDCM Using Flux Observer

  • Pan, Lei;Wang, Beibei;Su, Gang;Cheng, Baohua;Peng, Guili
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.251-260
    • /
    • 2015
  • The main purpose of this paper is to describe a DTC (direct torque control) method for four-switch brushless dc motor (BLDCM) drive. In the method, a novel voltage space vector modulation scheme, an optimal switching table, and a flux observation method are proposed. Eight voltage vectors are summarized, which are selected to control BLDCM in SVPWM pattern, and an optimal switching table is proposed to improve the torque distortion caused by midpoint current of the split capacitors. Unlike conventional flux observers, this observer does not require speed adaptation and is not susceptible to speed estimation errors, especially, at low speed. Global asymptotic stability of the flux observer is guaranteed by the Lyapunov stability analysis. DC-offset effects are mitigated by introducing a PI component in the observer gains. This method alleviates the undesired current and torque distortion which is caused by uncontrollable phase. The correctness and feasibility of the method are proved by simulation and experimental results.

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF