• Title/Summary/Keyword: Direct teaching

Search Result 246, Processing Time 0.03 seconds

Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot (센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시)

  • Ahn, Kuk-Hyun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.

Techniques of Editing and Reproducing Robot Operation Data for Direct Teaching (직접 교시 작업을 위한 로봇 작업 정보 편집 및 재생산 기법)

  • Kim, Han-Joon;Wang, Young-Jin;Kim, Jin-Oh;Back, Ju-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.1
    • /
    • pp.96-104
    • /
    • 2013
  • Study of human-robot Interaction gets more and more attention to expand the robot application for tasks difficult by robot alone. Developed countries are preparing for a new market by introducing the concept of 'Co-Robot' model of human-robot Interaction. Our research of direct teaching is a way to instruct robot's trajectory by human's handling of its end device. This method is more intuitive than other existing methods. The benefit of this approach includes easy and fast teaching even by non-professional workers. And it can enhance utilization of robots in small and medium-sized enterprises for small quantity batch production. In this study, we developed the algorithms for creating accurate trajectory from repeated inaccurate direct teaching and GUI for the direct teaching. We also propose the basic framework for direct teaching.

The 3D visual robot teaching mode design on the windows 95 (윈도우즈 95환경에서 3D Visual 로봇 교시 모드 구현)

  • 탁정률;이종수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.407-409
    • /
    • 1996
  • The Direct Arm(DDA) is a SCARA typed direct drive manipulator with three degree of freedom(DOF) using the direct motor of the NSK company. In the paper, we propose a convenient interface for the SCARA-type robot which is practical to use. The proposed Visual Robot Teaching Mode using 3D graphics replaces the current teaching box. And besides this graphical teaching software can be implemented on the PC which is company used as a robot controller. This program was developed for the Windows 95 OS.

  • PDF

Post-processing of Direct Teaching Trajectory in Industrial Robots

  • Choi, Tae-Yong;Park, Chan-Hun;Do, Hyun-Min;Chung, Kwang-Cho;Park, Dong-Il;Kyung, Jin-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.256-262
    • /
    • 2012
  • Direct teaching of the industrial robot is a novel technique to easily teach manipulators. However, teaching data by human hand cannot help having large noise errors ranging from low to high frequency. To use teaching data, post-processing to correct the teaching trajectory is required. Here, a novel shape-based trajectory correction method to rebuild teaching data with the feature information of curvature and velocity is proposed. The proposed method is tested on square and circular objects.

Teaching Models for Scientific Inquiry Activity through the Nature of Science (NOS)

  • Park, Jong-Won
    • Journal of The Korean Association For Science Education
    • /
    • v.28 no.7
    • /
    • pp.759-767
    • /
    • 2008
  • This article arose from the previous studies, which suggested a synthetic list for the nature of science (NOS), discussed the relationship between the NOS and scientific inquiry and the development of the NOS in the context of scientific inquiry. In this article, for teaching scientific inquiry through the NOS, I proposed three teaching models - reflection, interaction, and the direct model -. Within these teaching models, understanding the NOS is viewed as a prerequisite condition for the improved performance of scientific inquiry. In the reflection model, the NOS is embedded and reflected in scientific inquiry without explicit introduction or direct explanation of the NOS. In the interaction model, concrete interaction between scientific inquiry and the NOS is encouraged during the process of scientific inquiry. In the direct model, subsequent to directly comprehending the NOS at the first stage of activity, students conduct scientific inquiry based on their understanding of the NOS. The intention of this present article is to facilitate the use of these models to develop teaching materials for more authentic scientific inquiry.

Design of Robot Direct-Teaching Tool and its Application to Path Generation for Die Induction Hardening

  • Ahn, Jae-Hyung;Sungchul Kang;Changhyun Cho;Jisun Hwang;Mansuk Suh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.118.5-118
    • /
    • 2002
  • To apply induction hardening method to a press die having 3-D free surface, the induction hardening tool moves on a press die above 1~2mm gap with constant velocity. Since the induction hardening process requires its own hardening path for each die, a direct teaching method which generates working path directly guided by operators is more suitable than an offline method using CAD/CAM data. The direct teaching apparatus in this work includes a teaching tool with a force/torque sensor and data processing computer to finally generate robot's Induction hardening program , in direct teaching operation, an operator teaches working path maintaining contact with surface of press die by holding...

  • PDF

Study on Direct Teaching Algorithm for Remote Center Motion of Surgical Assistant Robot using Force/Torque Sensor (힘/토크 센서를 이용한 수술보조로봇의 원격중심운동 직접교시 알고리즘 연구)

  • Kim, Minhyo;Jin, Sangrok
    • The Journal of Korea Robotics Society
    • /
    • v.15 no.4
    • /
    • pp.309-315
    • /
    • 2020
  • This study shows a control strategy that acquires both precision and manipulation sensitivity of remote center motion with manual traction for a surgical assistant robot. Remote center motion is an essential function of a laparoscopic surgical robot. The robot has to keep the position of the insertion port in a three-dimensional space, and general laparoscopic surgery needs 4-DoF (degree-of-freedom) motions such as pan, tilt, spin, and forward/backward. The proposed robot consists of a 6-axis collaborative robot and a 2-DoF end-effector. A 6-axis collaborative robot performs the cone-shaped trajectory with pan and tilt motion of an end-effector maintaining the position of remote center. An end-effector deals with the remaining 2-DoF movement. The most intuitive way a surgeon manipulates a robot is through direct teaching. Since the accuracy of maintaining the remote center position is important, direct teaching is implemented based on position control in this study. A force/torque sensor which is attached to between robot and end-effector estimates the surgeon's intention and generates the command of motion. The predefined remote center position and the pan and tilt angles generated from direct teaching are input as a command for position control. The command generation algorithm determines the direct teaching sensitivity. Required torque for direct teaching and accuracy of remote center motion are analyzed by experiments of panning and tilting motion.

Variable Impedance Control and Fuzzy Inference Based Identification of User Intension for Direct Teaching of a Mobile Robot (이동로봇의 직접교시를 위한 가변 임피던스제어와 퍼지추론 기반 사용자 의도 파악)

  • Ko, Jong Hyeon;Bae, Jang Ho;Hong, Daehie
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.647-654
    • /
    • 2016
  • Controlling a mobile robot using conventional control devices requires skill and experience, and is not intuitive, especially in complex environments. For human-mobile robot cooperation, the direct-teaching method with impedance control has been used most frequently in complex environments. This thesis proposes a new direct-teaching method for a mobile robot utilizing variable impedance control. This includes analysis of user intention, which is changed by force and moment. A fuzzy inference technique is proposed in this thesis for identification of user intension. The direct teaching of a mobile robot based on variable impedance control through fuzzy inference is experimentally verified by comparing its efficiency to that of the conventional impedance control-based direct teaching of a mobile robot. Experimental data, such as the total time consumed, path error time, and the total energy used by the user, were recorded. The results showed that the efficiency of variable impedance control was increased.

Effective Teaching-Learning Activities in Flipped, Direct, Cooperative, and Distance Learning Model (거꾸로 수업, 직접교수법, 협동학습, 실시간 화상수업을 조합한 수업에서의 효과적인 교수학습활동)

  • Kil, Yangsook
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.121-129
    • /
    • 2022
  • This study explored effective teaching-learning activities under the hybrid teaching model combining flipped learning, direct instruction, cooperative learning and distance learning. Subjects were 99 college students enrolled in 2 teacher preparation courses. Students evaluated effectiveness of 22 teaching-learning activities according to Likert scale at the end of the semester. As a result, all 22 teaching learning activities were considered effective more or less. They facilitated motivation, comprehension, participation, thinking, and led to mastery of the task. ② Activities scored low were 'questioning and answering at the beginning of online class', 'open book test'. ③ Hybrid teaching model was favored over traditional instruction. Open ended responses were consistent with the ones in the questionnaire. This research supports the notion that key teaching models to be combined for successful flipped learning in college setting are direct instruction and cooperative learning. Furthermore, effective and ineffective teaching strategies for flipped learning were found.