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Abstract

Direct teaching of the industrial robot is a novel technique to easily teach manipulators. However, teaching data by human
hand cannot help having large noise errors ranging from low to high frequency. To use teaching data, post-processing to
correct the teaching trajectory is required. Here, a novel shape-based trajectory correction method to rebuild teaching data
with the feature information of curvature and velocity is proposed. The proposed method is tested on square and circular
objects.

Key Words: Direct teaching, Trajectory correction, Feature point extraction.

1. Introduction

Industrial articulated robot arms are usually used for fac-
tory automation. In general, industrial robot arms carry
out operations based on the teaching-playback method.
This method is separated into two parts, i.e., the teaching
part and the playback part. The conventional method to
teach the manipulator was with a complex computer and
teaching-pendant [1, 2]. Recently, some researchers pro-
posed novel robot teaching methods [3–7] including the di-
rect teaching method. Direct teaching (DT) is one of the
intuitive teaching methods. An operator pushes or pulls the
end-effector of a manipulator and it is complies with the
operator’s teaching force/moment; as a result, it moves as
the operator intends. The manipulator records the teaching
trajectory and plays it back at the operator’s request. This
method is very easy and effective compared to conventional
methods like teaching by teaching-pendant. However, there
are also many drawbacks to DT, i.e., teaching data extrac-
tion, teaching trajectory correction, trajectory optimization,
etc. Among these, teaching data extraction and correction
are considered here.

Teaching data extraction refers to shape data extraction
without the approaching trajectory, that is, the trajectory
from the origin position to the beginning position of the
target shape, or the departing trajectory, that is, the trajec-
tory from the end position of the shape trajectory the to
origin position. Teaching data correction means modify-
ing the trajectory taught by the human to be a more correct
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trajectory, suitable for use by the robot. The DT trajectory
is distorted through the data gathering process by F/T sen-
sor, ADC noise, and human hand error [8]. Human hand
error is a significant problem. Drawing a straight line on
the note with a pen is almost impossible for a human. Sim-
ilarly, drawing a straight line on the material with a robot
handle is actually impossible. This noise problem is not
significant for the approaching and departing trajectories.
However, it is critical for the shape trajectory.

Correction of the shape trajectory requires removal of
various types of noise. Human hand error cannot actually
be modeled numerically. Elimination of human hand er-
ror is dealt with in the free-hand sketch recognition on the
handheld PC or tablet [9]. Sezgin et al. used curvature and
velocity data to correct 2-dimensional freehand sketches.
However, their work is not fit for precise operation of in-
dustrial robots.

Here, a novel shape-based trajectory correction (STC)
method is proposed. DT trajectories are extracted from all
trajectories of the robot. The extracted shape trajectories
which contain both position and orientation are corrected
based on shape characteristics, to be more suitable for robot
operation..

2. Feature Point Recognition

We built a manipulator with the direct teaching function
as shown in Fig.1. A manipulator is guided along the outer
edge of the teaching area for deburring work. Deburring
is a good example for DT application [10] because it is a
tedious and repetitive job. The robot that we developed
contains a 6-axis F/T sensor at the end-effector to measure
contact force as shown in Fig.2. The basic purpose of this
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Figure 1: Direct Teaching Robot with 6-axis F/T sensor
being embedded in teaching module.

Figure 2: The manipulator have two 6-axis F/T sensors
such as (a) and (b). (a) F/T sensor used to detect teaching
start and end times.

sensor is to measure the contact forces precisely to enhance
the impedance control performance during direct teaching.
The F/T sensor input from Fig.2-(a) are actively used to
extract shape trajectory only.

2.1 Teaching data acquisition

A user moves the handle of the manipulator from the ori-
gin to the teaching start point on the plate and then returns it
to the origin. Fig.3-(a) shows that all trajectories of the end-
effector consist of the approaching trajectory, shape trajec-
tory, and departing trajectory. Measured F/T sensor input
are plotted versus time as the black line in Fig.3. Among
the six measured F/T sensor inputs, only the sum of the x-
y-z directional forces is used. Using only the z-directional
force is not enough because teaching in 3D space has to be
considered. So, we add x, y, and z directional forces as in
(1).

Figure 3: Filtered teaching data are estimated. Averaging
filter(blue), dithering(red) are applied.

MF (i) = forcex(i) + forcey(i) + forcez(i) (1)

MF is the measured force, and i is the sampling index. The
sum force MF is filtered with averaging as in (2). For the
data i < window/2 and i > I − window/2, i or I − i
are selected as a half of window length. Here, I is the total
sampling number.

AMF (i) =

i+window/2∑
k=i−window/2

MF (k)/window (2)

AMF means averaged MF .

∀i, if AMF (i) < Mean(AMF )× η,
Then,AMF (i) = −ϕ
Otherwise,AMF (i) = ϕ

(3)

The averaged filter data is dithered as in (3). η in (3) is a
division constant, which was set to be 1 in experiments. ϕ
in (3) is a user parameter. Finally, the processed force data
is plotted as the red line in Fig.3. In Fig.3, the dithered plot
(red lines) is not high for all teaching trajectory. There are
many valleys between the start and end points of teaching.
This is because of human error. It is likely that the human
operator will hold the teaching handle loosely when turn-
ing his attention to others. To extract only the start and end
points of teaching, all positive zero-crossing and negative
zero-crossing points for the dithered data are detected. The
first positive zero-crossing point is selected as the teach-
ing start point, and the last negative zero-crossing point is
selected as the teaching end point.

Finally, the extracted teaching trajectory is shown in
the blue line in Fig.4. The teaching trajectory includ-
ing approaching and departing is actually displayed in 3-
Dimensional space. Fig.4-(b) shows the top view and (c)
shows the side view. The left two black lines are the ap-
proaching and departing trajectories.
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Figure 4: A teaching trajectory, including approaching and
departing trajectory, is shown. The blue lines of (a), (b)
and (c) are the extracted teaching data. Unit(X-axis, Y-
axis):mm.

2.2 Sampling data number reduction

Teaching a manipulator is usually a slow process. In-
evitably dummy or duplicate data are sampled at a constant
sampling rate. This is critical to the necessary computing
power for a feature recognition algorithm followed. More
than 50% of the sampling data was dummy data in our ex-
periments. To remove that dummy data, Douglas-Peucker
Algorithm (DPA) is used with low threshold [11–13]. Ac-
tually, DPA is used to smooth the line with the proper user
parameter, which also smooths the corner points. Here,
corner points are very important to correct the direct teach-
ing data. Corner points must be detected to recognize the
feature points correctly, so the DPA with very small thresh-
old is used to avoid having an effect on the corner points of
the original trajectory. Only, dummy data is removed with
the DPA.

2.3 Morphological Feature points

The DT trajectory should be corrected for the robot. The
original profile contains various noises. First, high fre-
quency noise makes the robot need a very high speed end-
effector movement capability. Second, low frequency noise

due to human teaching error causes reduced performance.
The proposed STC method use the curvature and inverse
of the velocity to recognize the feature points of the DT
trajectory. Shape trajectory is corrected with the extracted
features. Curvature is the inverse of the radius of the circle
which contains neighborhood points. Curvature is high at
the corner points, and it is low on the line segments. Us-
ing this property, segments of the trajectory are classified
as straight lines, corners, and circle segments. To remove
the low frequency noise from human teaching error, the
Gaussian kernel of (4)is convolved with the curvature. The
Gaussian has two parameters: median and deviation. We
change the deviation. High deviation removes more infor-
mation, even true teaching information, and low deviation
removes less information, leaving the human-hand error.
So the selection of the proper deviation is important. Fig.6
shows the number of peaks at a specific deviation of the
curvature. We select the incline-changing point as proper
deviation. Most of high frequency noise are removed at this
time. The number of peak points are decreased with high
inclination until the high frequency noise is abolished. Af-
ter that, the inclination is decreased. That inclination vari-
ation point is selected. Fig.5 shows the variation of the fea-
ture points as the deviation increases. Some feature points
are rejected as the deviation increase. Surviving points are
considered true feature points. For each result of the Gaus-
sian convolution of curvature and velocity, proper devia-
tion values are chosen like PD in Fig.6 and Fig.8. Fig.11
shows the original curvature and inverse velocity plot with
the selected feature points at the proper deviation. Selected
features are plotted in Fig.10

f(x) = e(−
(x−c)2

2σ2
) (4)

where c is the center of the Gaussian function σ is the devi-
ation. Features from the curvature and velocity need to be
ordered to select a proper feature set to describe the mor-
phologically significant points in the shape profile. Feature
points from the curvature and velocity are merged based
on the orthogonal distance from the trajectory point to the
relevant line segment of the polyline as in (5). For all fea-
ture of the curvature and velocity, the feature set F and its
errors with respect to the original shape trajectory are de-
cided through Algorithm 1 and plotted in Fig.9. After a
certain time, the error stops decreasing suddenly. The rule
to select the choosing point which cut the feature points to
configure the shape trajectory is the variation of slope. For
example, the orthogonal distance between a simple square
trajectory and three feature points can be extremely larger
than that between a simple square trajectory and four fea-
ture points. The slope of errors varied suddenly when the
fourth feature is added. The surviving points are selected
as a proper feature set.

ε(Fi) =
1

|S|
∑
s∈S

OD(s, Fi) (5)
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where Fi is a feature set from Algorithm 1. Index i is also
from Algorithm 1. ODmeans the orthogonal distance from
a feature set to the original trajectory. S is the DT trajectory
length.

Algorithm 1 Hybrid feature selection
1: procedure FEATURE MERGE(C, V )
2: . C:Curvature feature, V:Velocity feature
3: F0 ← C

⋂
V

4: CL← C − F0;V L← V − F0

5: for All CLandV L do
6: i← i+ 1
7: CMAX ←Max(CL)
8: VMAX ←Max(V L)
9: Fic ← Fi−1

⋃
CMAX

10: Fiv ← Fi−1
⋃
VMAX

11: if ε(Fic) < ε(Fiv ) then . ε of (5)
12: Fi ← Fic

13: CL← CL− CMAX

14: V L← V L
15: else
16: Fi ← Fiv

17: CL← CL
18: V L← V L− VMAX

19: end if
20: end for
21: end procedure

Figure 5: Horizontal axis is sampling index during direct
teaching. Vertical axis is the gaussian kernel deviation ap-
plied to the curvature data.

2.4 Teaching trajectory correction
Using the selected feature set, the shape trajectory is re-

configured. Here, each segment is divided into features

Figure 6: Horizontal axis is the gaussian kernel deviation
applied to the curvature data. Vertical axis the the number
of the peak points. PD means proper deviation.

Figure 7: Horizontal axis is the gaussian kernel deviation
applied to the curvature data. Vertical axis the the number
of the negative zero-crossing.

which are distinguished as either curves or lines. The mea-
sure for distinguishing curves and lines for each segment
consisting of consecutive feature points is the ratio of Eu-
clidian length to accumulated length as in (6).

δ =
Euclidian length(si, si+1)

accumulated length(si, si+1)
(6)

where if δ > γ, the user-defined parameter, that segment
is considered as a straight line, otherwise it is a curve. γ
is always less than 1. The curve is reshaped as a simple
Bézier curve.

259



International Journal of Fuzzy Logic and Intelligent Systems, vol. 12, no. 3, September 2012

Figure 8: Horizontal axis is the gaussian kernel deviation
applied to the curvature data. Vertical axis the the number
of the negative zero-crossing.

Figure 9: ε of the feature set from the algorithm 1 are plot-
ted. In certain time, decrease of error stop suddenly. That
point is selected proper feature set.

3. Experiment

The developed STC method is tested for the square and
circular shaped objects. Experimental results are compared
with those of the DPA to prove the superiority of the STC.
The target objects are shown in Fig.12 The mean squared
error is used to compare the real trajectory of the object
and the resulting trajectory of the algorithm used. Table.1
shows the result of experiments. Fig.13 shows the trajec-
tory of the STC and DPA. The STC shows good results
compared to the DPA. The STC is relatively weak for a cir-
clular object because it is based on the feature of corner or
edge points. However, the STC is better than the simple

Figure 10: Feature points of curvature plot and velocity
plot are listed in the 2D shape profile. Unit(X-axis, Y-
axis):mm.
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(a) Curvature data with a gaussian filter

(b) Inverse of velocity data with a gaussian filter

Figure 11: (a) and (b) show the selected feature points at a
proper deviation value on the curvature plot and the inverse
of velocity plot.

Table 1: MSE for each experiments. Error unit : mm

Square Circle

DPA 0.25 0.19
STC 0.12 0.14

line smoothing method like the DPA used in the experi-
ments. Also, the STC enhances the smoothness of the line
without smoothing the corner points.

4. Conclusion

The shape trajectory of the DT trajectory was corrected
based on curvature and velocity features. It shows a smooth
and simplified shape trajectory. Using it, the robot can
move more naturally with no overload to the controller.
However, it shows weakness in circular shape. To advance
the proposed method, extending the algorithm to consider
the circular trajectory will be required. Also, comparison
studies with other similar methods on various objects are
planned.

(a) Square object (b) Circle object

Figure 12: Target object. (a) square object(width=15mm,
height=50mm). (b) circular object(radius=20mm)

(a) Square shape trajectory (b) Circle shape trajectory

Figure 13: The red line is the object trajectory. The blue
line is the trajectory from the DPA. The cyan line is the
trajectory from the STC. Unit(X-axis, Y-axis):mm.
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