• Title/Summary/Keyword: Direct strength method

Search Result 424, Processing Time 0.035 seconds

Measurement of Nonlinear Time-variant Source Characteristics of Intake and Exhaust Systems in Fluid Machines

  • Jang Seung-Ho;Ih Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.3E
    • /
    • pp.87-89
    • /
    • 2005
  • The acoustical sources of intake and exhaust systems in fluid machines are often characterized by the source impedance and strength using linear frequency-domain modeling. In the case of the sources which are nonlinear and time-variant, however, the source parameters were sometimes incorrectly obtained. In this paper, the source model and direct measurement technique are modified in order to evaluate the effect due to nonlinear and periodically time-varying source character as well as the linear property of the reflectivity of in-duct fluid machine source. With a priori known kinematical information of the source, the types of nonlinear time-variant terms can be presumed by a simple physical model, in which there is practically no restriction on the form of the model. The concept of source impedance can be extendable by introducing the linear frequency response function for each nonlinear or time-variant input. Extending the conventional method and adapting the reverse MISO technique, it is possible to develop a direct method that can deal with the nonlinear time-variant source parameters. The proposed direct method has a novel feature that there is no restriction on the probability or spectral natures of the excited sound pressure data. The present method is verified by the simulated measurements for simplified fluid machines. It is thought that the proposed method would be useful in predicting the insertion loss or the radiated sound level from intake or exhaust systems.

Comparisons on the Interface Shear Strength of Geosynthetics Evaluated by Using Various Kinds of Testing Methods (다양한 시험법에 의해 산정된 토목섬유 사이의 접촉면 전단강도 비교)

  • Seo, Min-Woo;Oh, Myoung-Hak;Yoon, Hyun-Suk;Park, Jun-Boum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.73-80
    • /
    • 2006
  • The shear behavior of four different interfaces consisting of four types of geosynthetics was investigated, and both static and dynamic test for the geosynthetic interfaces were conducted. The monotonic shear experiments were performed by using an inclined board apparatus and large direct shear device. The interface shear strength obtained from the inclined board test was compared with calculated values from large direct shear tests. The comparison results indicated that direct shear tests show high possibility to over-predict the shear strength in the low normal stress range where direct shear tests are not performed. Curved failure envelopes were also obtained for interface cases where two static shear tests were conducted. By comparing the friction angles measured from three tests, i.e. direct shear, inclined board, and shaking table test, it was found that the friction angle might be different depending on the test method and normal stresses applied in the research. Therefore, it was concluded that the testing method should be determined carefully by considering the type of loads and the normal stress expected in the field with using the geosynthetic materials installed in the site.

The Application of a Nonlinear Direct Spectrum Method for Mixed Building Structure (복합구조물에 대한 비선형 직접스펙트럼법의 적용)

  • 강병두;박진화;전대한;김재웅
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.258-265
    • /
    • 2002
  • Most structures are expected deform nonlinear and inelastic behavior when subjected to strong ground motion. Nonlinear time history analysis(NTHA) is the most rigorous procedure to compute seismic performance in the various inelastic analysis methods. But nonlinear analysis procedures necessitate more reliable and practical tools for predicting seismic behavior of structures. Some building codes propose the capacity spectrum method. This method is the concept of an equivalent linear system, wherein a linear system having reduced stiffness and increased damping is used to estimate the response of the nonlinear system. This procedure are conceptually simple, but the iterative procedure is time-consuming and may sometimes lead to no solution or multiple solutions. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for mixed building structure.

  • PDF

Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes (다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석)

  • 강병두;박진화;전대환;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

The Nonlinear Direct Spectrum Method Improving Application and Reliability of Existing Approximate Nonlinear Methods (기존 비선형약산법들의 신뢰성 개선을 위한 비선형직접스펙트럼법)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.55-66
    • /
    • 2006
  • This paper considers the nonlinear direct spectrum method to estimate seismic performance of mixed building structures without iterative computations, given dynamic property $T_1$ from stiffness skeleton curve and nonlinear pseudo acceleration $A_{1y}/g$ and/or ductility ratio p from response spectrum. Nonlinear response history analysis has been performed and analysed with various earthquakes for evaluation of correctness and confidence of nonlinear direct spectrum method. The conclusions of this study are as follows; (1) Nonlinear direct spectrum method is considered as a practical method which is applicable to compute the structural initial elastic period and the yielding strength from stiffness skeleton owe and calculate the nonlinear maximum response of structure directly from nonlinear response spectrum. (2) The comparison of the analysis results from NDSM and NRHA showed that the average errors were less than 20% in about 3/4 of the analysis cases, and that the results obtained from NDSM turned out to be generally larger than those from NRHA.

Effects of Vacuum Heat Treatment and Salt bath Heat Treatment Conditions on Mechanical Properties of High Speed tool Steel (금속도 공구강의 기계적 성질에 미치는 진공열처리와 염욕열처리 조건의 영향)

  • Kim, Je-Don;Kim, Kyung-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.26 no.1
    • /
    • pp.7-13
    • /
    • 2013
  • Vacuum heat treatment(indirect heating method) has long exposure time at high temperature and low quenching rate. Contrarily salt bath heat treatment (direct heating method) has short exposure time at high temperature and fast cooling rate. With these different features of processes, mechanical properties such as hardness, tensile strength and impact strength of products show very different results. In this study, Salt bath heat treated products showed higher tensile strength and impact strength than vacuum heat treated products but hardness was not much different. These lower mechanical properties of vacuum heat treated products are due to differences in heat process and secondary hardening with high temperature tempering process. Consequently, It indicates that salt bath heat treatment is better way than vacuum heat treatment for product to have high mechanical properties.

Studies on the evaluation method of structural concrete strength using joint separation test body (접합분리 시험체를 사용한 구조체 콘크리트 강도 평가에 관한 실험적 연구)

  • Kim, Seong-Deok;Lee, Seon-Ho;Kim, Kwang-Ki;Jung, Kwang-Sik;Lim, Nam-Ki;Jung, Sang-Jin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.993-996
    • /
    • 2008
  • It has been reported that destruction test by core collection is the most reliable of the structural concrete strength in present building construction field. But it causes low efficiency by damage and cutting in structure due to the core collection. It also has some problems in repairing. Additionally in case of strength test with management specimen, different environment compared to the structure environment cause problems about estimation precise structure strength. Therefore, it is required to develop structure direct strength test that has test values and credibility above the ones obtained by core specimen collection strength test and seasonal specimen test to suggest a reasonable and practical management method of structural concrete.

  • PDF

Development of an In Situ Direct Shear Test Apparatus and Its Field Application (현장직접전단시험기의 개발 및 현장적용에 관한 연구)

  • Kim, Yong-Phil;Lee, Young-Kyun;Lee, Sung-Kook;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.181-191
    • /
    • 2011
  • It is very difficult to prepare a lab. test specimen from weak rock masses affected by faults, highly fractured zone or weathered zone. In conventional method of in situ direct shear test a rock block is sheared inside galleries, where reactions for the hydraulic jacks are available. A new in situ direct shear test apparatus has been developed in this study to perform the test inside galleries as well as open pit conditions. The apparatus is composed of normal and shear reaction plates including load transfer plates, hydraulic cylinder systems, load cells, multistage shear boxes with fixing devices, and needle rollers. Maximum size of the test block is $400{\times}400{\times}460$ mm, and procedures of the test block preparation has been suggested. To explore the field applicability of in situ direct shear test apparatus, proper test block site was investigated by extensive geological field survey. In situ direct shear test has been successful in producing most of information related to strength and deformability of the weak rock.

Scale Effects of the Specimen on Shear Strength of sand by Direct Shear Test (직접전단시험에 의한 모래의 전단강도에서 시편의 크기효과)

  • Kim, Joon-Seok;Kim, Ji-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.590-596
    • /
    • 2019
  • Purpose: An experimental study was conducted on the sand samples for the size effect of the test specimens, one of the problems of the direct shear test. Method: Jumunjin standard sand, a representative sand of Korea, was used as sand sample. The large direct shear test was performed to analyze the shear strength at 50%, 60%, 70%, and 80% relative density, and then the comparative results were compared with the test results of the small direct shear test. Result: It was analyzed that the internal friction angle of the small shear tester tended to be relatively large in the dense region. It was analyzed that the results of the large shear tester tend to be relatively large in the region of medium relative density. Conclusion: The size effect on the samples in the direct shear test on sandy soil was analyzed to be relatively small.

Estimation of Tensile Strength Using Reverse Analysis Method for Ultra High Performance Concrete (역해석 기법을 이용한 초고성능콘크리트의 인장강도 추정)

  • Lee, Chang-Hong;Kim, Young-Jin;Chin, Won-Jong;Kim, Hee-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.163-164
    • /
    • 2010
  • Ultra high performance concrete (UHPC) is a relatively new cementitous material, which has been developed to give significantly higher material performance than conventional concrete or engineered cementitious composites. In this study, reverse analysis of notched UHPC beam was conducted according to the experimental result of load-displacement. Conclusively, tensile strength vs. CMOD (Crack Mouth Opening Displacement) was calculated as an approximated method for the direct tensile strength estimation.

  • PDF