• Title/Summary/Keyword: Direct printing method

Search Result 87, Processing Time 0.035 seconds

The Current State, Outcome and Vision of Additive Manufacturing

  • Terner, Mathieu
    • Journal of Welding and Joining
    • /
    • v.33 no.6
    • /
    • pp.1-5
    • /
    • 2015
  • Additive Manufacturing defines the fabrication of objects by successive consolidation of materials, layer by layer, according to a three-dimensional design. The numerous technologies available today were recently standardized into seven categories based on the general method. Each technology has its own set of advantages and limitations. Though it very much depends on the field of application, major assets of additive manufacturing compared to conventional processing routes are the ability to readily offer complexity (in terms of intricate shape and customization) and significant reduction of waste. On the other hand, additive manufacturing often suffers of relatively low production rates. Anyhow, additive manufacturing technologies is being given outstanding attention. In particular, metal additive manufacturing emerges as of great significance in industries like aerospace, automotive and tooling. The trend progresses toward full production of high value finished products.

Fabrication and Application of Graphene Composite with Various Modifications (다양한 변화가 가능한 그래핀 복합체 제작 및 응용)

  • Park, Jongsung;Kim, Dong-Su;Kim, Ji-Kwan
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.201-204
    • /
    • 2020
  • In this study, we fabricated and evaluated graphene composite based 3D scaffolds and planar films. The hybrid composite was prepared by mixing a calculated amount of graphene nanopowder and polydimethylsiloxane in tetrahydrofuran solution. The hybrid composite is easy to manufacture into various forms using direct printing technology or a pressing method. A 3D scaffold structure was prepared at ambient temperature with a flow rate of 240 mm/min. The nozzle pressure was maintained at 350 kPa by adjusting the viscosity of the composite material. The planar film was prepared at different thicknesses using a roll-to-roll equipment. The prepared hybrid nanocomposites were evaluated to investigate their electrical properties according to temperature and mechanical deformation. The obtained results were consistent with each other. Therefore, it can be used effectively as sensors through shape definition.

Mechanical Property of Photocurable Hydrogel Fiber by Light Intensity (빛의 강도에 따른 광경화성 하이드로겔 섬유의 기계적 물성)

  • Lee, Sangmin;Chu, Bokyeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.38-43
    • /
    • 2021
  • Photocurable hydrogels are widely used as 3D printing materials in tissue engineering (e.g., scaffold fabrication) as well as optical fibers (or optical sensors) materials. Photocurable hydrogels can control optical and mechanical properties such as chemical or fabrication conditions. In previous research, we introduced a new 3D printing method to fabricate a freestanding overhanging hydrogel structure without supporting structure. This study was measured and analyzed the difference of the mechanical properties of the photocurable hydrogel according to the light intensity using a micro tensile tester. In practically, it was difficult to perform a direct tensile test on a micro (less than 1 mm) size fiber. In this study, the tensile test of the hydrogel fibers could be measured simply and repeatedly using a paper carrier.

High-performance Barrier Rib Formation Processes for High-efficiency PDPs

  • Toyoda, Osamu;Tokai, Akira;Kifune, Motonari;Inoue, Kazunori;Sakita, Koichi;Betsui, Keiichi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.215-219
    • /
    • 2004
  • We reported two new techniques of barrier rib formation that are applicable to a variety of structures for high-efficiency PDPs suitable for mass-production [1]. These two methods are mold replication and direct glass sculpting. Especial progress has since been made in improving these methods to be more suitable for high-efficiency PDPs with the DelTA cell structure. This paper reports photolithographic fabrication methods for the masters used in mold replication. The masters for more complex barrier rib forms are easier to make with these methods. The paper also reports a process that combines the direct glass sculpting method with an ink-jet printing method of electrode formation.

  • PDF

Electrical Characteristics of Copper Circuit using Inkjet Printing (잉크젯 프린팅 방식으로 형성된 구리 배선의 전기적 특성 평가)

  • Kim, Kwang-Seok;Koo, Ja-Myeong;Joung, Jae-Woo;Kim, Byung-Sung;Jung, Seung-Boo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.3
    • /
    • pp.43-49
    • /
    • 2010
  • Direct printing technology is an attractive metallization method, which has become immerging as "Green technology" to the conventional photolithography, on account of low cost, simple process and environment-friendliness. In order to commercialize the printed electronics in industry, it is essential to evaluate the electrical properties of conductive circuits using direct printing technology. In this contribution, we focused on the electrical characteristics of inkjet-printed circuits. A Cu nanoink was inkjet-printed onto a Bisaleimide triazine(BT) substrate with parallel transmission line(PTL) and coplanar waveguide(CPW) type, then was sintered at $250^{\circ}C$ for 30 min. We calculated the resistivity of printed circuits through direct current resistance by the measurement of I-V curve: the resistivity was approximately 0.558 ${\mu}{\Omega}{\cdot}cm$ which is about 3.3 times that of bulk Cu. Cascade's probe system in the frequency range from 0 to 30 GHz were employed to measure the Scattering parameter(S-parameter) with or without a gap between the substrate and the probe station chuck. The result of measured S-parameter showed that all printed circuits had over 5 dB of return loss in the entire frequency range. In the curve of insertion loss, $S_{21}$, showed that the PTL type circuits had better transmission of radio frequency (RF) than CPW type.

Development of Display by Screen Printing and Heat-transfer (스크린 인쇄법 및 열 전사법에 의한 디스플레이 개발)

  • 이현철;남수용
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.1
    • /
    • pp.102-112
    • /
    • 2002
  • Cathode ray tubes (CRT) are the most common electronic display in use in information technology. The CRT consists of an electron gun, electrostatic or magnetic fields to direct the electron beam, and a phosphor screen. When the electron beam strikes the phosphor screen, the phosphor generates light. The phosphor screen has formed by precipitation method, electro-forming and centrifuge method. The high quality product was achieved by electro-forming or centrifuge method. Now applying method is electro-forming used with phosphor and Eh(isopropyl alcohol). Now applying method has been much consumption of raw-material, dirty working environment, dangerous fire and require of high cost. New method to form phosphor surface of monochrome is required to improve this matter. This study was developed novel method to form the phosphor surface by heat-transfer method. This method have advantages of simple process, automatization, clean environment, saving raw material and saving running-cost.

  • PDF

One-step fabrication of a large area wire-grid polarizer by nanotransfer molding

  • Hwang, Jae-K.;Park, Kyung-S.;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.464-464
    • /
    • 2011
  • We report a method to fabricate a large-area metal nanowire-grid polarizer. Liquid-bridge-mediated nanotransfer molding (LB-nTM) is based on the direct transfer of metal nanowires from a mold to a transparent substrate via liquid layer. A metal particle solution is used as an ink in the LB-nTM, which can be used for the formation of metal nanowires. The nanowires have higher depth are preferred for high transmittance. The height of nanowires that we made is about 140 nm. Large-area WGP is fabricated with good average transmittance of 74.89% in our measuring range.

  • PDF

A Study about Development of Environment Printing Technology and $CO_2$ (환경 인쇄 기술의 발전과 인쇄물의 $CO_2$ 발생량에 관한 연구)

  • Lee, Mun-Hag
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.30 no.3
    • /
    • pp.89-114
    • /
    • 2012
  • For as to world, the concern about the environment problem is enhanced than any other time in the past because of being 21 century. And the environment problem is highlighted as the world-wide issue. The time of the environment problem intimidates the alive of the mankind and presence of an earth over the time. It becomes the essentiality not being selection in the personal living or the economical viewpoint now to prepare for the climatic modification. As to the company management, the green growth period which it excludes the environment management considering an environment, cannot carry on the company the continued management comes. That is, in the change center of the management paradigm, there is the environment management. Nearly, the greenhouse gas which the publication industry is the environmental toxic material like all industries is generated. The greenhouse gas is ejected in the process of running the manufacturing process and print shop of the various kinds material used as the raw material of the book. Particularly, the tree felling for getting the material of the paper is known to reach the direct influence on the global warming. This study does according to an object it considers and organizes the environment parameter based on this kind of fact as to the publication industry. And it is determined as the reference which is used as the basic materials preparing the case that carbon exhaust right transaction(CAP and TRADE) drawing are enforced in all industries and is sustainable the management of the publication industry and reduces the environmental risk among the company many risk management elements and plans and enforces the publication related policy that there is a value. In the printing publication industry, this study tried to inquire into elements discharging the environmental pollutant or the greenhouse gas. Additionally, in the printed publication production process, it tried to inquire into the effort for an environment-friendly and necessity at the printing paper and the printers ink, regarded as the element discharging the greenhouse gas all kinds of the printing materials, operation of the print shop and all kinds of the machines and recycle process, and etc. These considerations make these industrial field employees aware of the significance about a conservation and environmental protection. They try to give a help in the subsequent study producing quantitatively each environmental parameter emission of green house gas. This makes the calculation of the relative $CO_2$ output reproached ultimately possible. Meanwhile, in a sense, many research protects and improving an environment in connection with the contents of research at the printing publication industrial field is in progress. There will be the voluntary human face that it has to protect an environment but this can not do by the outside factor according to all kinds of environment related law and regulation. Anyway, because of acting on company management as the factor of oppression, the increase of this environment-related correspondence cost could know that the research that the environment loading relates with a procurement and development, environment management system introduction, quality control standard, including, normalizing including a material, and etc. through the part of the effort to reduce the cost low was actively in progress. As to the green growth era, as follows, this paper prescribed the subject and alternative of the print publication industry. It is surrounded by the firstly new digital environment and the generation of the subject. And secondly the printing industry is caused by the point of time when the green growth leaves by the topic which is largest in the global industry and it increases. The printing publication industry has to prepare the bridgehead for the environment-friendly green growth as the alternative for this resolution with first. The support blown in each industry becomes the obligation not being selection. Prestek in which the print publishing was exposed to spend many energies and which is known as the practice of the sustainable print publishing insisted that it mentioned importance of the green printing through the white pages in 2008 and a company had to be the green growth comprised through the environment-friendly activity. The core management for the sustainable printing publication industry presented from Presstack white pages is compacted to 4 words that it is a remove, reduce, recover, and recycle. Second, positively the digital printing(POD) system should be utilized. In the worldwide print out market, the digital printing area stops at the level of 10% or so but the change over and growth of the market of an analog-to-digital will increase rapidly in the future. As to the CEO Jeff Hayes of the Infoland, the offset print referred to that it of the traditional method got old and infirm with the minor phase of the new printing application like the customer to be wanted publication and the print of the digital method led the market. In conclusion, print publishers have to grasp well the market flow in the situation where a digitalization cannot be generalized and a support cannot avoid. And it keeps pace with the flow of the digital age and the recognition about the effort for the development and environment problem have to be raised. Particularly, the active green strategy is employed for the active green strategy.

Direct Printing and Patterning of Highly Uniform Graphene Nanosheets for Applications in Flexible Electronics

  • Gu, Ja-Hun;Lee, Tae-Yun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.39.2-39.2
    • /
    • 2011
  • With the steady increase in the demand for flexible devices, mainly in display panels, researchers have focused on finding a novel material that have excellent electrical properties even when it is bended or stretched, along with superior mechanical and thermal properties. Graphene, a single-layered two-dimensional carbon lattice, has recently attracted tremendous research interest in this respect. However, the limitations in the growing method of graphene, mainly chemical vapor deposition on transition metal catalysts, has posed severe problems in terms of device integration, due to the laborious transfer process that may damage and contaminate the graphene layer. In addition, to lower the overall cost, a fabrication technique that supports low temperature and low vacuum is required, which is the main reason why solution-based process for graphene layer deposition has become the hot issue. Nonetheless, a direct deposition method of large area, few-layered, and uniform graphene layers has not been reported yet, along with a convenient method of patterning them. Here, we report an evaporation-induced technique for directly depositing few layers of graphene nanosheets with excellent uniformity and thickness controllability on any substrate. The printed graphene nanosheets can be patterned into desired shapes and structures, which can be directly applicable as flexible and transparent electrode. To illustrate such potential, the transport properties and resistivity of the deposited graphene layers have been investigated according to their thickness. The induced internal flow of the graphene solution during tis evaporation allows uniform deposition with which its thickness, and thus resistivity can be tuned by controlling the composition ratio of the solute and solvent.

  • PDF

Organic Thin-Film Transistors Fabricated on Flexible Substrate by Using Nanotransfer Molding

  • Hwang, Jae-Kwon;Dang, Jeong-Mi;Sung, Myung-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.287-287
    • /
    • 2010
  • We report a new direct patterning method, called liquid bridge-mediated nanotransfer molding (LB-nTM), for the formation of two- or three-dimensional structures with feature sizes between tens of nanometers and tens of micron over large areas. LB-nTM is based on the direct transfer of various materials from a mold to a substrate via a liquid bridge between them. This procedure can be adopted for automated direct printing machines that generate patterns of functional materials with a wide range of feature sizes on diverse substrates. Arrays of TIPS-PEN TFTs were fabricated on 4" polyethersulfone (PES) substrates by LB-nTM using PDMS molds. An inverted staggered structure was employed in the TFT device fabrication. A 150 nm-thick indium-tin oxide (ITO) gate electrode and a 200 nm-thick SiO2dielectric layer were formed on a PES substrate by sputter deposition. An array of TIPS-PEN patterns (thickness: 60 nm) as active channel layers was fabricated on the substrate by LB-nTM. The nominal channel length of the TIPS-PEN TFT was 10 mm, while the channel width was 135 mm. Finally, the source and drain electrodes of 200 nm-thick Ag were defined on the substrate by LB-nTM. The TIPS-PEN TFTs can endure strenuous bending and are also transparent in the visible range, and therefore potentially useful for flexible and invisible electronics.

  • PDF