• 제목/요약/키워드: Direct numerical simulation

검색결과 454건 처리시간 0.038초

역압력 구배 난류 경계층에서 레이놀즈 응력의 스케일 간 수송 (Interscale transport of the Reynolds stress in a turbulent boundary layer subjected to adverse pressure gradient)

  • 윤민
    • 한국가시화정보학회지
    • /
    • 제20권1호
    • /
    • pp.38-44
    • /
    • 2022
  • An interscale transport of the turbulent kinetic energy (TKE) and Reynolds shear stress (RSS) is examined in an adverse pressure gradient (APG) turbulent boundary layer (TBL). The direct numerical simulation data of an APG TBL at Reτ = 834 and β = 1.45 is employed. The TKE and RSS transport equations are divided into large and small scales, leading to the introduction of interscale transport. The TKE mainly transfers from large scales to small ones in the outer region, and vice versa for the RSS. An interscale transport of TKE and inverse interscale transport of RSS are amplified by APG, and the latter results in the increase in large scales of TKE production. Some of outer large scales of enhanced TKE transfer to small scales and then dissipate by viscosity, and the remains dissipate turbulent-non-turbulent interfaces by turbulent transport.

Interaction of turbulences with non-breaking divergent waves in an open channel

  • Hwang, Ayoung;Seok, Woochan;Lee, Sang Bong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.35-49
    • /
    • 2021
  • This paper presents a direct numerical simulation of turbulent flows over a bump in an open channel to examine the turbulence characteristics near divergent waves emanating from the bump and to investigate the interaction of the turbulences with the divergent waves. To verify the reliability of the simulations, the mean velocity profile and root-mean-square of velocity fluctuations are compared with previous data. The anisotropic invariant maps show that the ratio of the streamwise to spanwise velocity fluctuations plays an important role in characterizing the anisotropic nature of the separated shear layer behind the bump in the vicinity of the free surface. The vortex identification discloses a large-scale streamwise vortical structure from the mean velocity field and a cluster of small coherent structures from the instantaneous velocity field, which are responsible for the anisotropic characteristics of the turbulence beneath the free surface.

우각부 방파제의 안전성에 영향을 미치는 수리학적 거동 (Hydraulic Behavior Affecting the Safety of Reflected Breakwater)

  • 김성덕
    • 한국안전학회지
    • /
    • 제23권5호
    • /
    • pp.91-96
    • /
    • 2008
  • A reflected breakwater can be affected by wave pressure and power because it is to be concentrated by wave energy. The present study is to estimate hydraulic behavior affecting around a reflected breakwater, which is discontinuity cases and various angle of coner at the breakwater. The numerical model to investigate wave diffraction, which is important hydraulic factor in the ocean, is performed by using direct boundary element method. The present numerical results are compared with the solutions of approximate and absolute based on an eigenfunction, and the solution of analytical by Fresnel integral. The results of the present numerical simulation agreed well with those of the published numerical and analytical data. As a result of this study, wave height is high at the comer of breakwater, and it is to be high if angle of conner at the reflected breakwater is small.

이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구 (A Study of 3-Dimensional Turbulent Channel Flow Using Discrete Wavelet Transform)

  • 김강식;이상환
    • 대한기계학회논문집B
    • /
    • 제29권3호
    • /
    • pp.314-321
    • /
    • 2005
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isoropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability density function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.

이산 웨이블릿 변환을 이용한 3차원 난류 채널 유동에 관한 연구 (A Study of 3-Dimensional Turbulent Channel Flow using Discrete Wavelet Transform)

  • 김강식;이상환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1813-1818
    • /
    • 2004
  • Discrete Wavelet Transform (DWT) has been applied to the Direct Numerical Simulation (DNS) data of turbulent channel flow. DWT splits the turbulent flow into two orthogonal parts, one corresponding to coherent structures and the other to incoherent background flow. The coherent structure is extracted from not vorticity field but velocity's since the channel flow is not isotropic. By comparing DWT's result of channel flow with that of isotropic flow, it is shown that coherent structure maintains the properties of original channel flow. The velocity field of coherent structures can be represented by few wavelet modes and that these modes are sufficient to reproduce the velocity probability distribution function (PDF) and the energy spectrum over the entire inertial range. The remaining incoherent background flow is homogeneous, has small amplitude, and is uncorrelated. These results are compared with those obtained for the same compression rate using large eddy simulation (LES) filtering. In contrast to the incoherent background flow of DWT, the LES subgrid scales have a much larger amplitude and are correlated, which makes their statistical modeling more difficult.

  • PDF

직파재배 논의 지표관개 수리특성 -건답휴립직파 논을 중심으로- (Hydraulic Characteristics of Surface Irrigation in Paddy Field of Direct Seeding Culture -With paddy field of ridge direct dry seeding-)

  • 정하우;최진용;김대식;박기욱;배승종
    • 한국농공학회지
    • /
    • 제39권4호
    • /
    • pp.64-74
    • /
    • 1997
  • The purpose of this study is to analyze hydraulic characteristics of surface irrigation in a paddy field of direct seeding culture. Field experiment was performed in the paddy field of ridge direct dry seeding. Simulation by a numerical model was also accomplished with the data obtained from the field experiment. The model was developed by one dimensional zero-inertia equation and finite difference method. From the result of the field observation, the furrows of the experimental field were found to have various geometric characteristics. Advance distance and time were measured both in the field and by the model simulation for various furrow lengths and irrigation discharges. Roughness coefficients of each furrow were also estimated by the model.

  • PDF

직접 및 간접식 자연순환형 태양열 온수급탕시스템의 열적성능 해석 (Thermal Performance Evaluation on Direct and Indirect Solar Thermosyphon System)

  • 전홍석;오정무;천원기;강용혁
    • 태양에너지
    • /
    • 제8권1호
    • /
    • pp.74-81
    • /
    • 1988
  • A preliminary study has been done to investigate the thermal performance of an indirect system. Direct systems are also analyzed and the results are compared with those of the indirect system where possible. Values from the numerical simulation show very good agreement with the measured data. Although the indirect system is generally expensive and not as efficient as direct systems, it is more reliable in frigid weather conditions like the winters in Korea.

  • PDF

천이박리유동의 직접수치모사 Part I:주 불안정성 (Drirect Numerical Simulation of Transitional Separated Flows Part I:Primary Instability)

  • 양경수
    • 대한기계학회논문집B
    • /
    • 제20권9호
    • /
    • pp.2965-2972
    • /
    • 1996
  • Transitional flow in an obstructed channel is investigated using numerical simulation. Two-dimensional thin obstacles are mounted symmetrically in the vertical direction and periodically in the streamwise direction. Flow separation occurs at the tip of the sharp obstacles. Depending on the Reynolds number, the flow undergoes Hopf bifurcation as the primary instability leading to a two-dimensional unsteady periodic solution. At higher Reynolds numbers, the unsteady solution exhibits a symmetry-breaking bifurcation which results in an unsteady asymmetric solution. The results are compared with experiments currently available, and show a good agreement.