• Title/Summary/Keyword: Direct laser lithographic system

Search Result 3, Processing Time 0.016 seconds

Parametric Study for a Diffraction Optics Fabrication by Using a Direct Laser Lithographic System (회절광학소자 제작을 위한 레이저 직접 노광기의 공정실험)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.845-850
    • /
    • 2016
  • A direct laser lithography system is widely used to fabricate various types of DOEs (Diffractive Optical Elements) including lenses made as CGH (Computer Generated Hologram). However, a parametric study that uniformly and precisely fabricates the diffractive patterns on a large area (up to $200mm{\times}200mm$) has not yet been reported. In this paper, four parameters (Focal Position Error, Intensity Variation of the Lithographic Beam, Patterning Speed, and Etching Time) were considered for stabilization of the direct laser lithography system, and the experimental results were presented.

Process Study of Direct Laser Lithographic System for Fabricating Diffractive Optical Elements with Various Patterns (다중 패턴의 회절광학소자 제작을 위한 레이저 직접 노광시스템의 공정 연구)

  • Kim, Young-Gwang;Rhee, Hyug-Gyo;Ghim, Young-Sik;Lee, Yun-Woo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.2
    • /
    • pp.58-62
    • /
    • 2019
  • Diffractive Optical Elements(DOEs) diffracts incident light using the diffraction phenomenon of light to generate a desired diffraction image. In recent years, the use of diffraction optics, which can replace existing refractive optical elements with flat plates, has been increased by implementing various optical functions that could not be implemented in refractive optical devices and by becoming miniaturized and compacted optical elements. Direct laser lithography is typically used to effectively fabrication such a diffractive optical element in a large area with a low process cost. In this study, the process conditions for fabricating patterns of diffractive optical elements in various shapes were found using direct laser lithographic system, and optical performance evaluation was performed through fabrication.

Design and Lithographic Fabrication of Elliptical Zone Plate Array with High Fill Factor

  • Anh, Nguyen Nu Hoang;Rhee, Hyug-Gyo;Ghim, Young-Sik
    • Current Optics and Photonics
    • /
    • v.5 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • An elliptical zone plate (EZP) array is important in off-axis optical systems because it provides two advantages. First, the residual beam and the main source are not focused in the same direction and second, the light from the observation plane is not reflected back towards the beam source. However, the fill factor of the previous EZP array was about 76% which was a little low. Hence, this EZP array could not collect the maximum amount of illumination light, which affected the overall optical performance of the lens array. In this study, we propose a new EZP array design with a 97.5% fill factor used in off-axis imaging system for enhancement of brightness and contrast. Then, direct laser lithography was used to fabricate the high fill factor EZP array by moving the XY linear stage of the system in a zigzag motion. The imaging properties of the proposed EZP array were experimentally verified at the focal plane and compared with the previous model.