• Title/Summary/Keyword: Direct contact membrane distillation

Search Result 27, Processing Time 0.022 seconds

Numerical study of direct contact membrane distillation process: Effects of operating parameters on TPC and thermal efficiency

  • Zamaniasl, Mohammadmehdi
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.387-394
    • /
    • 2019
  • Membrane distillation (MD) is one of the water treatment processes which involves the momentum, heat and mass transfer through channels and membrane. In this study, CFD modeling has been used to simulate the heat and mass transfer in the direct contact membrane distillation (DCMD). Also, the effect of operating parameters on the water flux is investigated. The result shows a good agreement with the experimental result. Results indicated that, while feed temperature is increasing in the feed side, water flux improves in the permeate side. Since higher velocity leads to the higher mixing and turbulence in the feed channel, water flux rises due to this increase in the feed velocity. Moreover, results revealed that temperature polarization coefficient is rising as flow rate (velocity) increases and it is decreasing while the feed temperature increases. Lastly, the thermal efficiency of direct contact membrane distillation is defined, and results confirm that thermal efficiency improves while feed temperature increases. Also, flow rate increment results in enhancement of thermal efficiency.

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.71-86
    • /
    • 2016
  • The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

Evaluation of the efficiency of cleaning method in direct contact membrane distillation of digested livestock wastewater

  • Kim, Sewoon;Park, Ki Young;Cho, Jinwoo
    • Membrane and Water Treatment
    • /
    • v.8 no.2
    • /
    • pp.113-123
    • /
    • 2017
  • This study investigated effects of physical and chemical cleaning methods on the initial flux recovery of fouled membrane in membrane distillation process. A laboratory scale direct contact membrane distillation (DCMD) experiment was performed to treat digested livestock wastewater with 3.89 mg/L suspended solids, 874.7 mg/L COD, 543.7 mg/L nitrogen, 15.6 mg/L total phosphorus, and pH of 8.6. A hydrophobic PVDF membrane with an average pore size of $0.22{\mu}m$ and a porosity of 75 % was installed inside a direct contact type membrane distillation module. The temperature difference between feed and permeate side was maintained at $40^{\circ}C$ with the feed and permeate stream velocity of 0.18 m/s. The results showed that the permeate flux decreased from $22.1L{\cdot}m^{-2}{\cdot}hr^{-1}$ to $19.0L{\cdot}m^{-2}{\cdot}hr^{-1}$ after 75 hours of distillation. The fouled membrane was cleaned first by physical flushing and consecutively by chemicals with NaOCl and citric acid. After the physical cleaning the flux was recovered to 92 % as compared with the initial clean water flux of the virgin membrane. Then 94 % of the flux was recovered after cleaning by 2,000 ppm NaOCl for 90 minutes and finally 97 % of flux recovered after 3 % citric acid for 90 minutes. SEM-EDS and FT-IR analysis results presented that the foulants on the membrane surface were removed effectively after each cleaning step. The contact angle measurement showed that the hydrophobicity of the membrane surface was also restored gradually after each cleaning step to reach nearly the same hydrophobicity level as the virgin membrane.

Permeate Flux Analysis of Direct Contact Membrane Distillation (DCMD) and Sweep Gas Membrane Distillation (SGMD) (직접접촉식과 동반기체식 막증류 공정의 투과수 변화에 따른 비교해석)

  • Eum, Su-Hwan;Kim, Albert S.;Lee, Yong-Taek
    • Membrane Journal
    • /
    • v.21 no.3
    • /
    • pp.236-246
    • /
    • 2011
  • In this study, we used prepared a cylindrical module consisting 100 hollow fibers of commercialized (hydrophobic) polyethylene membrane of $0.4{\mu}m$ pore size and systematically studied performance of direct contact membrane distillation (DCMD) and sweep gas membrane distillation (SGMD) in terms of variation of permeate flux and salt rejection with respect to temperature drop across the membrane, salt concentrations in feed, and flow rates of cooling water and sweep gas. SGMD was regarded as DCMD with a sweep gas layer between permeate-side membrane surface and cooling water. Sweep gas flow decreases the permeate flux from that of DCMD by providing an additional gas-layer resistance. We compared DCMD and SGMD performance by using mass balance with a fitting parameter (${\omega}$), indicating fraction of permeate flow rate.

Effect of ultrasonic irradiation on membrane fouling and membrane wetting in direct contact membrane distillation process (초음파 조사가 직접 접촉식 막증발 공정의 막오염과 막젖음에 미치는 영향)

  • Jang, Yongsun;Choi, Yongjun;Lee, Sangho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.3
    • /
    • pp.343-350
    • /
    • 2016
  • Membrane distillation (MD) is a novel separation process that have drawn attention as an affordable alternative to conventional desalination processes. However, membrane fouling and pore wetting are issues to be addressed prior to widespread application of MD. In this study, the influence of ultrasonic irradiation on fouling and wetting of MD membranes was investigated for better understanding of the MD process. Experiments were carried out using a direct contact membrane distillation apparatus Colloidal silica was used as a model foulants in a synthetic seawater (35,000 mg/L NaCl solution). A vibrator was directed attached to membrane module to generate ultrasonic waves from 25 kHz (the highest energy) to 75 kHz (the lowest energy). Flux and TDS for the distillate water were continuously monitored. Results suggested that ultrasonic irradiation is effective to retard flux decline due to fouling only in the early stage of the MD operation. Moreover, wetting occurred by a long-term application of ultrasonic rradiation at 75 kHz. These results suggest that the conditions for ultrasonic irradiation should be carefully optimized to maximize fouling control and minimize pore wetting.

The Study of Wetting in Direct Contact Membrane Distillation (직접접촉식 막증발법에서의 막 젖음 현상에 관한 연구)

  • Shin, Yonghyun;Koo, Jaewuk;Han, Jihee;Lee, Sangho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.2
    • /
    • pp.30-34
    • /
    • 2014
  • Membrane distillation (MD) is a thermal driven separation process in which separation a hydrophobic membrane is a barrier for the liquid phase, letting the vapor phase pass through the membrane pores. Therefore, a porous and hydrophobic membrane should be used in membrane distillation. MD cannot work if water penetrates into the pores of the membrane (membrane wetting). Accordingly, it is necessary to prevent wetting of MD membranes and to remove water inside the pores of the wetted membranes if possible. In this context, our study aimed to develop methods to recover wetted membranes in MD processes. Poly-vinylidene fluoride (PVDF) membranes were used in this study. A laboratory-scale direct contact MD (DCMD) system was used to examine the effect of operating parameters on wetting. For dewetting the wetted membranes, specific techniques including the use of high temperature air were applied. The performances of the membranes before and after dewetting were compared in terms of flux, salt rejection and liquid entry pressure(LEP). The surface morphology of dewetted membrane was confirmed by scanning electron microscope (SEM).

Analysis of thermal energy efficiency for hollow fiber membranes in direct contact membrane distillation

  • Park, Youngkyu;Lee, Sangho
    • Environmental Engineering Research
    • /
    • v.24 no.2
    • /
    • pp.347-353
    • /
    • 2019
  • Although membrane distillation (MD) has great promise for desalination of saline water sources, it is crucial to improve its thermal efficiency to reduce the operating cost. Accordingly, this study intended to examine the thermal energy efficiency of MD modules in a pilot scale system. Two different modules of hollow fiber membranes were compared in direct contact MD mode. One of them was made of polypropylene with the effective membrane area of $2.6m^2$ and the other was made of polyvinylidene fluoride with the effective membrane area of $7.6m^2$. The influence of operation parameters, including the temperatures of feed and distillate, feed flow rate, and distillate flow rate on the flux, recovery, and performance ratio (PR), was investigated. Results showed that the two MD membranes showed different flux and PR values even under similar conditions. Moreover, both flow rate and temperature difference between feed and distillate significantly affect the PR values. These results suggest that the operating conditions for MD should be determined by considering the module properties.

Inorgainc fouling and it fouling reduction in direct contact membrane distillation process (직접 접촉식 막 증발공정에서 무기 막오염 특성 분석 및 저감방법)

  • Lee, Tae-Min;Kim, Seung-Hyun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.34 no.2
    • /
    • pp.115-125
    • /
    • 2020
  • This study was aimed to examine inorganic fouling and fouling reduction method in direct contact membrane distillation(DCMD) process. Synthetic seawater of NaCl solution with CaCO3 and CaSO4 was used for this purpose. It was found in this study that both CaCO3 and CaSO4 precipitates formed at the membrane surface. More fouling was observed with CaSO4(anhydrite) and CaSO4·0.5H2O(bassanite) than CaSO4·2H2O(gypsum). CaCO3 and gypsum were detected at the membrane surface when concentrates of SWRO(seawater reverse osmosis) were treated by the DCMD process, while gypsum was found with MED(multi effect distillation) concentrates. Air backwash(inside to out) was found more effective in fouling reduction than air scouring.

Feasibility study on shale gas wastewater treatment using membrane distillation (막 증발법을 이용한 셰일가스 폐수 처리 가능성 평가)

  • Cho, Hyeongrak;Choi, Yongjun;Lee, Sangho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.441-447
    • /
    • 2016
  • Development of shale gas has drawn increasing attention since it is one of promising alternative energy resources. However, contamination of groundwater and surface water during the extraction of shale gas is becoming a serious environmental issues, which brings the needs to treat wastewater generated from hydraulic fracking. In this study, the feasibility of membrane distillation (MD) for the treatment of shale gas wastewater was investigated using a laboratory scale experimental setup. Flat-sheet MD membranes were used to treat produced water from a shale gas well in the United States. Different configurations such as direct contact MD (DCMD) and air gap MD (AGMD) were compared in terms of flux and fouling propensity. The foulants on the surface of the membranes were examined. The results suggest that MD can treat the shale gas produced water containing more than 200,000 mg/L of total dissolved solids, which is impossible by other technologies such as reverse osmosis (RO) and forward osmosis (FO). In this study, we investigated the possibility of processing and characterization of shale gas produce wastewater using membrane distillation. Laboratory scale membrane distillation experimental device was developed. It was compared the flat-sheet direct contact membrane distillation and flat-sheet air gap membrane distillation. AGMD flux in lower than the flux of DCMD, it was expected that the contamination caused by organic matters.

Membrane distillation of power plant cooling tower blowdown water

  • Ince, Elif;Uslu, Yasin Abdullah
    • Membrane and Water Treatment
    • /
    • v.10 no.5
    • /
    • pp.321-330
    • /
    • 2019
  • The objective of this study was to examine the recovery of the power plant cooling tower blowdown water (CTBD) by membrane distillation. The experiments were carried out using a flat plate poly vinylidene fluoride (PVDF) membrane with a pore diameter of $0.22{\mu}m$ by a direct contact membrane distillation unit (DCMD). The effects of operating parameters such as transmembrane temperature difference (${\Delta}T$), circulation rate and operating time on permeate flux and membrane fouling have been investigated. The results indicated that permeate flux increased with increasing ${\Delta}T$ and circulation rate. Whereas maximum permeate flux was determined as $47.4L/m^2{\cdot}h$ at ${\Delta}T$ of $50^{\circ}C$ for all short term experiments, minimum permeate flux was determined as $7.7L/m^2{\cdot}h$ at ${\Delta}T$ of $20^{\circ}C$. While $40^{\circ}C$ was determined as the optimum ${\Delta}T$ in long term experiments. Inorganic and non-volatile substances caused fouling in the membranes.