• Title/Summary/Keyword: Direct Surface Forming

Search Result 58, Processing Time 0.024 seconds

New Technique of Spatial Printing of Materials for Arbitrary Shape Forming (임의의 형상 성형을 위한 새로운 공간 직접 성형 기술)

  • 이일한;정용재;김창경
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.107-114
    • /
    • 2000
  • In this study, we investigated the possibility of the application of the EzROBO system to direct shaping techniques which can make arbitrary shapes without any specific mold. We formed arbitrary shapes using raw materials of EH-260D (Epoxy+Binder) with the conditions of $250\mu\textrm{m}$ layer thickness, 0.2MPa working pressure, 20mm/sec working velocity, and 1.8mm needle thickness. The developed Spatial Printing Technique showed enhanced working velocity and lower cost than existing 3DP process, and is expected to replace the existing process through the process optimization in the future.

  • PDF

Interconnecting Nanomaterials for Flexible Substrate and Direct Writing Process

  • Jwa, Yong-Ho
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.58.1-58.1
    • /
    • 2012
  • Direct write technologies provide flexible and economic means to manufacture low-cost large-area electronics. In this regard inkjet printing has frequently been used for the fabrication of electronic devices. Full advantage of this method, which is capable of reliable direct patterning with line and space dimensions in the 10 to 100 um regime, is only made with all-solution based processing. Among these printable electronic materials, silver and copper nanoparticles have been used as interconnecting materials. Specially, solutions of organic-encapsulated silver and copper nanoparticles may be printed and subsequently annealed to form low-resistance conductor patterns. In this talk, we describe novel processes for forming silver nanoplates and copper ion complex which have unique properties, and discuss the optimization of the printing/annealing processes to demonstrate plastic-compatible low-resistance conductors. By optimizing both the interconnecting materials and the surface treatments of substrate, it is possible to produce particles that anneal at low-temperatures (< $200^{\circ}C$) to form continuous films having low resistivity and appropriate work function for formation of rectifying contacts.

  • PDF

A Preliminary Study on the Application of Three-Dimensional (3D) Printing Technologies to Hot Bulk Forming Processes - Example of Preform Design and Investigation of Hot-working Tool Steel Deposited Surface (3 차원 프린팅 기술의 열간 체적 성형 공정 적용에 관한 기초 연구 - 예비형상 설계 예 및 열간 금형강으로 적층된 표면 특성 분석)

  • Ahn, Dong-Gyu;Kim, Se-Hun;Lee, Ho-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.12
    • /
    • pp.1093-1100
    • /
    • 2014
  • The goal of this paper is to investigate preliminary the applicability of 3D printing technologies for the development of the hot bulk forming process and die. 3D printing technology based on the plastic material was applied to the preform design of the hot forging process. Plastic hot forging dies were fabricated by Polyjet process for the physical simulation of the workpiece deformation. The feasibility of application of Laser-aided Direct Metal Rapid Tooling (DMT) process to the fabrication of the hot bulk metal forming die was investigated. The SKD61 hot-working tool steel was deposited on the heat treated SKD61 using the DMT process. Fundamental characteristics of SKD 61 hot-working tool steel deposited specimen were examined via hardness and wear experiments as well as the observation of the morphology. Using the results of the examination of fundamental characteristics, the applicability of the DMT process to manufacture hot bulk forming die was discussed.

Pre-Penetration Behavior of Botryosphaeria dothidea on Apple Fruits

  • Kim, Ki-Woo;Park, Eun-Woo;Ahn, Kyng-Ku
    • The Plant Pathology Journal
    • /
    • v.15 no.4
    • /
    • pp.223-227
    • /
    • 1999
  • Pre-penetration behavior of Boytryosphaeria dothidea on apple fruits was investigated with scanning electron microscopy. Once conidia were deposited on the fruit surface, they germainted and produced germ tubes from one or both ends of the conidia. Germ tubes grew over the fruit surface and entered the fruits through lenticels or surface cracks formed naturally. Germ tubes of the fungus also appeared to penetrated the fruits directly with or without forming appressoria. Globose appressoria were frequently formed at the tip of germ tubes on the fruit surface, where no lenticels or surface cracks were found. The conidia collapsed and became flattened to the fruit surface after appressorial formation. Cuticles of fruit surface underneath appressoria and tips of some germ tubes were evidently altered, indicating possibility of direct penetration of the fungus by enzymatic degradation of the cuticle layers. This the first report on the formation of appressoria by B. dothidea.

  • PDF

Influence of electron irradiation on the structural and optoelectronics properties of ZTZ thin films prepared by magnetron sputtering (마그네트론 스퍼터링법으로 제조된 ZTZ 박막의 구조적 전기광학적 특성에 미치는 전자빔 조사의 영향)

  • Cha, Byung-Chul;Jang, Jin-Kyu;Choi, Jin-Young;Lee, In-Sik;Kim, Dae-Wook;Kim, Yu-Sung;Kim, Daeil
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.363-367
    • /
    • 2022
  • Transparent ZnO/Ti/ZnO (ZTZ) tri-layered films were prepared with radio frequency (RF) and direct current (DC) magnetron sputtering on the glass substrate. The thickness of the ZnO and Ti films was kept at 50 and 10 nm to consider the effect of the electron irradiation on the crystallization and optoelectrical properties of the films. From the XRD spectra, post-depostion electron irradiated films showed the characteristic peaks of ZnO(002) and Ti(200), respectively. the observed grain size of the ZnO(002) and Ti(200) enlarged up to 18.27 and 12.16 nm at an irradiation condition of 750 eV. In the figure of merit which means an optoelectrical performance of the films, as deposited films show a figure of merit of 2.0×10-5 𝛺-1, while the films electron irradiated at 750 eV show a higher figure of merit of 5.7×10-5 𝛺-1.

An Experimental Study on the Abrasion Tests as a Result of using Materials of Full Denture Occlusal Surface (총의치교합면의 사용재료에 따른 마모도 측정에 관한 실험적 연구)

  • Cha, Sung-Soo
    • Journal of Technologic Dentistry
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 1983
  • I got a conclusion as a result of that in case of constructing a full denture using acrylic resin teeth, porcelain teeth, and forming posterior occlusal surface of the artificial teeth by Type III Gold and Nickel crome alloy thus construdting a full denture and therefore comparing the above case with abrasion of Natural teeth. The result were as follows : 1. The abrasion of Natural teeth and the abrasion of full denture constructed by Type III gold has a close resemblance. 2. The one that has the hightest degree of abrasion is full denture that's using, with acrylic resin teeth, maxillary and mandibular And the lowest abrasion is natural teeth-natural teeth. 3. In case of single denture, that's opposing to natural teeth, the one that has the hightest degree of abrasion is a full denture that's using Acrylic resin teeth and the lowest abrasion is a full denture that's forming occlusal surface by Type III gold. 4. The single denture, which is opposing to type III gold teeth, was abraded above everything by full denture which is constructed by porcelain teeth. 5. In the same teeth, the abrasion of mandibular teeth was greater than that of mandibular teeth was greater than that of maxillary teeth. 6. The abrasion degree of Acrylic resin teeth has no direct mutual connection with material hardness which is opposing to.

  • PDF

Finite Element Analysis of an Ultrasonic Tool Horn for Pattern Forming (초음파 패턴성형을 위한 공구혼의 설계 및 유한요소해석)

  • Seo, Young-Soo;Park, Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.3
    • /
    • pp.363-369
    • /
    • 2011
  • In this study, a direct pattern forming process on a plastic film using ultrasonic vibration energy is investigated. A tool horn containing micro-patterns is attached to an ultrasonic power supply, and is used to press a plastic film with ultrasonic vibration in order to replicate micro-patterns on the surface of the plastic film. To replicate micro-patterns with high accuracy, the tool horn should be designed to allow only the longitudinal vibration, not the transverse vibration. For this purpose, the design of a tool horn is investigated through finite element analysis, from which the resulting natural frequency of the tool horn can be adjusted in the range of the ultrasonic power supply. The analysis result is then reflected on the optimal design and fabrication of the tool horn. The validity of the developed tool horn is discussed through pattern-forming experiments using the ultrasonic vibration of the developed tool horn.

Near-Net-Shape Forming and Green Properties of Silicon Nitride by Direct Coagulation Casting Technique (직응집성형법을 이용한 질화규소의 실형상 성형공정 및 성형특성)

  • Jung, Yun-Sung;Pagnoux, Cecile;Jung, Yeon-Gil;Paik, Un-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.299-307
    • /
    • 2002
  • In this proposed study, a new emerging shape forming technique Direct Coagulation Casting(DCC) which enables to fabricate complex-shaped ceramic parts has been investigated using colloid surface chemistry. Various process variables affected by dispersant, coagulation agent and sintering additives, have been evaluated in order to achieve highly concentrated stabilized silicon nitride suspensions. A high solid loading of 51 vol% in the dispersed silicon nitride suspension was prepared with 1.0wt% Tetraethylammonium Hydroxide (TEAH), which obtained a stable silicon nitride suspension with sintering additives $(Al_2O_3\;and\;Y_2O_3)$ in alkaline regions. The addition of hydroxyaluminium diacetate into the suspension, which decomposed at elevated temperatures, led to coagulate of a silicon nitride suspension. In a basic medium, aluminum ions precipitated to aluminum hydroxide $(Al(OH)_3)$, leading to decreased $OH^-$ concentration and, thus, coagulated suspension.

Histological Study on the Interface of Bone and Implant (골과 임플란트 접촉면의 조직학적 연구)

  • Kim, Ju-Sung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.37 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • This paper reports the morphological nature of the remodelled interface process between implants and surrounding bone after 1, 4, 6, 8 and 12 weeks of implantation of smooth machined implants into rat tibias. After 4 weeks of implantation, histochemical analysis showed that the new bone was growing in direct contact with the implant. In the forming process, the activatived osteoblast cells migrated toward the interface and colonized the surface at the contact areas. This immature woven bone, rich in osteocyte lacunae, was deposited directly onto the implant surface. Osteoblast activity was found to continue ill 12 weeks of implantation The osteoblasts in lacunar areas developed numerous processes and synthesized bone matrix, after all, surrounded by secreting matrix. At the 12th week, the amount of newly formed bone matrix between bone and implant increased in mineralization. The mineralized mature bone contained well organized collagen fibers with characteristic banding pattern bone tissue formation around the implant.

  • PDF

Effect of Process Parameters on Forming Characteristics of Selective Laser Sintered Fe-Ni-Cr Powder (Fe-Ni-Cr 분말의 선택적 레이저 소결 적층시 공정변수에 따른 조형특성)

  • Joo, B.D.;Jang, J.H.;Yim, H.S.;Son, Y.M.;Moon, Y.H.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.262-267
    • /
    • 2009
  • Selective laser sintering is a kind of rapid prototyping process whereby a three-dimensional part is built layer wise by laser scanning the powder. This process is highly influenced by powder and laser parameters such as laser power, scan rate, fill spacing and layer thickness. Therefore a study on fabricating Fe-Ni-Cr powder by selective laser sintering has been performed. In this study, fabrication was performed by experimental facilities consisting of a 200W fiber laser which can be focused to 0.08mm and atmospheric chamber which can control atmospheric pressure with argon. With power increase or energy density decrease, line width was decreased and line surface quality was improved with energy density increase. Surface quality of quadrangle structure was improved with fill spacing optimization.