• Title/Summary/Keyword: Direct Simulation Monte Carlo

Search Result 171, Processing Time 0.027 seconds

Wedge Failure Probability Analysis for Rock Slope Based on Non-linear Shear Strength of Discontinuity (불연속면의 비선형 전단강도를 이용한 암반사면 쐐기파괴 확률 해석)

  • 윤우현;천병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.151-160
    • /
    • 2003
  • The stability of the designed rock slope is analysed based on two kinds of shear strength model. Besides the deterministic analysis, a probabilistic approach on Monte Carlo simulation is proposed to deal with the uncertain characteristics of the discontinuity and the results obtained from two models are compared to each other. To carry out the research of characteristics of the discontinuity, BIPS, DOM Scanline survey data and direct shear test data are used, and chi-square test is used for determining the probability distribution function. The rock slope is evaluated to be stable in the deterministic analysis, but in the probabilistic analysis, the probability of failure is more than 5%, so, it is considered that the rock slope is unstable. In the shear strength models, the probability of the failure based on the Mohr-Coulomb model(linear model) is higher than that of the Barton model. It is supported by the fact that the Mohr-Coulomb model is more sensitive to block size than the Barton model. In fact, there is no reliable way to estimate the unit cohesion of the Mohr-Coulomb model except f3r back analysis and in the case of small block failure in the slope, Mohr-Coulomb model may excessively evaluate the factor of the safety. So, the Barton model of which parameters are easily acquired using the geological survey is more reasonable for the stability of the studied slope. Also, the selection of the proper shear strength model is an important factor for slope failure analysis.

Closing Analysis of Symmetric Steel Cable-stayed Bridges and Estimation of Construction Error (대칭형 강 사장교의 폐합해석과 시공오차의 예측)

  • Lee, Min Kwon;Lee, Hae Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.55-65
    • /
    • 2006
  • This paper presents the closing analysis of a symmetric steel cable-stayed bridge erected by a free cantilever method. Two independent structural systems are formed before the closing procedure of a bridge is performed, and thus the compatibility conditions for vertical displacement and rotational angle are not satisfied at the closing section without the application of proper sectional forces. Since, however, it is usually impossible to apply sectional forces at the closing section, the compatibility conditions should be satisfied by proper external forces that can be actually applicable to a bridge. Unstrained lengths of selected cables and the pull-up force of a derrick crane are adjusted to satisfy nonlinear compatibility conditions, which are solved iteratively by the Newton-Raphson method. Cable members are modeled by the elastic catenary cable elements, and towers and main girders are discretized by linear 3-D frame elements. The sensitivities of displacement with respect to the unstrained lengths of selected cables and the pull-up force of the derrick crane are evaluated by the direct differentiation of the equilibrium equation. A Monte-Carlo simulation approach is proposed to estimate expected construction errors for a given confidence level. The proposed method is applied to the second Jindo Grand Bridge to demonstrate its validity and effectiveness.

Probabilistic Strength Assessment of Ice Specimen considering Spatial Variation of Material Properties (물성치의 공간분포를 고려한 빙 시험편의 확률론적 강도평가)

  • Kim, Hojoon;Kim, Yooil
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.2
    • /
    • pp.80-87
    • /
    • 2020
  • As the Arctic sea ice decreases due to various reasons such as global warming, the demand for ships and offshore structures operating in the Arctic region is steadily increasing. In the case of sea ice, the anisotropy is caused by the uncertainty inside the material. For most of the research, nevertheless, estimating the ice load has been treated deterministically. With regard to this, in this paper, a four-point bending strength analysis of an ice specimen was attempted using a stochastic finite element method. First, spatial distribution of the material properties used in the yield criterion was assumed to be a multivariate Gaussian random field. After that, a direct method, which is a sort of stochastic finite element method, and a sensitivity method using the sensitivity of response for random variables were proposed for calculating the probabilistic distribution of ice specimen strength. A parametric study was conducted with different mean vectors and correlation lengths for each material property used in the above procedure. The calculation time was about ten seconds for the direct method and about three minutes for the sensitivity methods. As the cohesion and correlation length increased, the mean value of the critical load and the standard deviation increased. On the contrary, they decreased as the friction angle increased. Also, in all cases, the direct and sensitivity methods yielded very similar results.

Dust scattering simulation of far-ultraviolet light in the Milky Way

  • Jo, Young-Soo;Seon, Kwang-Il;Min, Kyoung-Wook;Jeong, Woong-Seob;Witt, Adolf N.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.57.3-58
    • /
    • 2021
  • We performed three-dimensional Monte Carlo dust scattering radiative transfer simulations for FUV light to obtain dust scattered FUV images and compared them with the observed FUV image obtained by FIMS/SPEAR and GALEX. From this, we find the scattering properties of interstellar dust in our Galaxy and suggest the intensity of extragalactic background light (EBL) at FUV wavelength. The best-fit values of the scattering properties of interstellar dust are albedo = 0.38-0.04+0.04, g-factor = 0.55-0.15+0.10, and EBL = 138-23+21 CU for the allsky which are consistent well with the Milky Way dust model of Draine and direct measurements of Gardner et al., respectively. At the high Galactic latitude of |b|>10°, the observation is well fitted with the model of lower albedo = 0.35-0.04+0.06 and g-factor = 0.50-0.20+0.15. On the contrary, the scattering properties of interstellar dust show higher albedo = 0.43-0.02+0.02 and g-factor = 0.65-0.15+0.05 near the Galactic plane of |b|<10°. In the present simulation, recent three-dimensional distribution maps of interstellar dust in our Galaxy, stellar distances in the catalog of GAIA DR2, and FUV fluxes and/or spectral types in the TD-1 and Hipparcos star catalogs were used.

  • PDF

Prelinimary Engagement Effect Analysis of Isotropic Kinetic Energy Warhead (등방성 운동에너지 탄두의 교전 효과 예비 분석)

  • Shim, Sang-Wook;Hong, Seong-Min;Seo, Min-Guk;Tahk, Min-Jea
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.5
    • /
    • pp.440-448
    • /
    • 2015
  • Kinetic energy(KE) rod warhead system is a new interceptor which combines advantages of existing ones. This system is less dependant on a precision guidance than direct hit type warhead and gives high penetration rates than blast fragmentation type warhead. In this paper, isotropic KE rod warhead system is introduced with detonation/deployment model. A penetration effects of the deployed rods are calculated using TATE penetration equation. Also, an engagement performance analysis method is suggested. Finally, an optimal detonation time and engagement geometry is derived by Monte-Carlo simulation in various engagement situation using the performance analysis factor.

Study on the Thruster Plume Behaviors using Preconditioned Scheme and DSMC Method (예조건화 기법과 직접모사법을 이용한 추력기 플룸 거동에 관한 연구)

  • Lee, Kyun-Ho;Kim, Su-Kyum;Yu, Myoung-Jong
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.144-153
    • /
    • 2009
  • To study the plume effects in the rarefied region, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the rarefied region numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the rarefied flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow region, etc, can be investigated.

  • PDF

Performance Evaluation of Opportunistic Incremental Relaying Systems by using Partial and Full Channel Information in Rayleigh Fading Channels (레일레이 페이딩 채널에서 부분 및 전체 채널 정보를 이용하는 기회전송 증가 릴레이 시스템의 성능)

  • Kim, Nam-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.6
    • /
    • pp.71-78
    • /
    • 2013
  • Recently, the opportunistic incremental relaying systems have been studied to improve the system performance effectively in wireless fading channel. Most of the performance analysis of the system includes a source-destination direct link. And there are few analysis which consider source-relay-destination indirect paths only. Therefore this paper proposes a transmission protocol which relays the source information using the selected relay from the partial channel information at the first stage in an opportunistic incremental relaying system. If the transmission fails, the selected best relay from the full channel information retransmits the information to the destination incrementally. The performance of the proposed system is derived analytically and verified from Monte Carlo simulation. The derived results can be applied to the system design and the performance estimation of the mobile systems and the bidirectional TV broadcasting systems which adapt an opportunistic incremental relaying system.

Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics (전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구)

  • Choi, Wook;Lee, Kyun Ho;Myong, Rho Shin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.9
    • /
    • pp.766-774
    • /
    • 2017
  • When a plume flow exhausted from a lunar lander descent engine impinges on the lunar surface, regolith particles on the lunar surface will be dispersed due to a plume-surface interaction. If the dispersed particles collide with the lunar lander, some adverse effects such as a performance degradation can be caused. Thus, this study tried to predict the plume flow behaviors using the CFD methods. A nozzle inside region was analyzed by a continuum flow model based on the Navier-Stokes equations while the plume behaviors of the outside nozzle was performed by comparing and analyzing the individual results using the continuum flow model and the DSMC method. As a result, it was possible to establish an optimum procedure of the plume analysis for the lunar lander descent engine in the vacuum condition. In the future, it is expected to utilize the present results for the development of the Korean lunar lander.

Sensitivity analysis of the plastic hinge region in the wall pier of reinforced concrete bridges

  • Babaei, Ali;Mortezaei, Alireza;Salehian, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • As the bridges are an integral part of the transportation network, their function as one of the most important vital arteries during an earthquake is fundamental. In a design point of view, the bridges piers, and in particular the wall piers, are considered as effective structural elements in the seismic response of bridge structures due to their cantilever performance. Owing to reduced seismic load during design procedure, the response of these structural components should be ductile. This ductile behavior has a direct and decisive correlation to the development of plastic hinge region at the base of the wall pier. Several international seismic design codes and guidelines have suggested special detailing to assure ductile response in this region. In this paper, the parameters which affect the length of plastic hinge region in the reinforced concrete bridge with wall piers were examined and the sensitivity of these parameters was evaluated on the length of the plastic hinge region. Sensitivity analysis was accomplished by independently variable parameters with one standard deviation away from their means. For this aim, the Monte Carlo simulation, tornado diagram analysis, and first order second moment method were used to determine the uncertainties associated with analysis parameters. The results showed that, among the considered design variables, the aspect ratio of the pier wall (length to width ratio) and axial load level were the most important design parameters in the plastic hinge region, while the yield strength of transverse reinforcements had the least effect on determining the length of this region.

Study on Small Thruster Plume using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area (희박영역에서 예조건화 연속체기법과 직접모사법을 이용한 소형 추력기 플룸 거동에 관한 연구)

  • Lee, Kyun-Ho;Lee, Sung-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.906-915
    • /
    • 2009
  • To study the plume effects in the vacuum area, the Direct Simulation Monte Carlo(DSMC) method is usually adopted because the plume field usually contains the entire range of flow regime from the near-continuum in the vicinity of nozzle exit through transitional state to free molecular at far field region from the nozzle. The objective of this study is to investigate the behaviors of a small monopropellant thruster plume in the vacuum area numerically using DSMC method. To deduce accurate results efficiently, the preconditioned scheme is introduced to calculate continuum flow fields inside thruster to predict nozzle exit properties used for inlet conditions of DSMC method. By combining these two methods, the vacuum flow characteristics of plume such as strong nonequilibrium near nozzle exit, large back flow area, etc, can be investigated.