DOI QR코드

DOI QR Code

전산유체역학을 이용한 아폴로 달착륙선 하강엔진의 플룸 거동 연구

Plume Behavior Study of Apollo Lunar Module Descent Engine Using Computational Fluid Dynamics

  • Choi, Wook (Department of Aerospace Engineering, Sejong University) ;
  • Lee, Kyun Ho (Department of Aerospace & System Engineering, Gyeongsang National University) ;
  • Myong, Rho Shin (Department of Aerospace & System Engineering, Gyeongsang National University)
  • 투고 : 2017.02.06
  • 심사 : 2017.04.02
  • 발행 : 2017.09.01

초록

달착륙선 하강엔진에서 사출된 배기가스가 월면과 충돌할 때 배기가스와 월면과의 상호작용으로 인해 월면에 분포되어 있는 표토가 분산된다. 이때, 분산된 표토입자가 착륙선과 충돌할 경우 성능 저하 등과 같은 역효과를 야기할 수 있다. 따라서 본 연구에서는 달착륙 엔진의 배기가스 거동을 전산유체해석을 통해 예측하고자 하였다. 하강엔진의 노즐내부 영역은 Navier-Stokes 방정식 기반의 연속체 유동 모델을 이용하여 해석하였으며, 노즐 외부 배기가스 거동은 연속체 유동 모델과 직접모사법(DSMC)을 적용하여 해석한 결과를 각각 비교 및 분석하였다. 이를 통해 진공환경에서 달착륙선 하강엔진에 대한 최적의 배기가스 해석 절차를 수립할 수 있었으며, 차후 한국형 달착륙선 개발에 충분히 활용할 수 있을 것으로 기대된다.

When a plume flow exhausted from a lunar lander descent engine impinges on the lunar surface, regolith particles on the lunar surface will be dispersed due to a plume-surface interaction. If the dispersed particles collide with the lunar lander, some adverse effects such as a performance degradation can be caused. Thus, this study tried to predict the plume flow behaviors using the CFD methods. A nozzle inside region was analyzed by a continuum flow model based on the Navier-Stokes equations while the plume behaviors of the outside nozzle was performed by comparing and analyzing the individual results using the continuum flow model and the DSMC method. As a result, it was possible to establish an optimum procedure of the plume analysis for the lunar lander descent engine in the vacuum condition. In the future, it is expected to utilize the present results for the development of the Korean lunar lander.

키워드

참고문헌

  1. Sutton, G. P., and Biblarz, O., "Rocket Propulsion Elements," John Wiley & Sons Inc., 8th ed, 2010.
  2. Lee, K. H., and Lee, S. N., "Study on Small Thruster Plume Using Preconditioned Continuum Scheme and DSMC Method in Vaccum Area," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 37, No. 9, 2009, pp.906-915. https://doi.org/10.5139/JKSAS.2009.37.9.906
  3. Morris, A. B., Goldstein, D. B., Varghese, P. L., and Trafton, L. M., "Lunar Dust Transport Resulting from Single- and Four-Engine Plume Impingement," AIAA Journal, Vol. 54, No. 4, 2016, pp.1339-1349. https://doi.org/10.2514/1.J054532
  4. He, X., He, B., and Cai, G., "Simulation of Rocket Plume and Lunar Dust Using DSMC Method," Elsevier Journal, Vol. 70, 2012, pp.100-111.
  5. Garbe, M., "Numerical Simulation of Nitrogen Nozzle Expansion Using Kinetic and Continuum Approaches," Proceedings of the 59th International Astronautical Conference, 2008.
  6. Marichalar, J., Prisbell, A., Lumpkin, F., and LeBeau, G., "Study of Plume Impingement Effects in the Lunar Lander Environment," Proceedings of the AIP Conference, Vol. 1333, No. 1, 2011, pp.589-594.
  7. He, B., He, X., Zhang, M., and Cai, G., "Plume Aerodynamic Effects of Cushion Engine in Lunar Landing", Chinese Journal of Aeronautics, Vol. 26, No. 2, 2013, pp.269-278. https://doi.org/10.1016/j.cja.2013.02.003
  8. Lee, W. B., Ryu, D. Y., Kwon, J. W., Koo, C. H., Lee, H. H., and Ju, G. H., "Ground Test for Lunar Lander Demonstrator," Proceedings of the KSAS Spring Conference, 2013, pp.736-739.
  9. Gilroy, R., and Sackheim, R., "The Lunar Module Descent Engine - A Historical Summary, " Proceedings of the 25th Joint Propulsion Conference, 1989.
  10. Elverum JR, G. Staudhammer, P., Miller, J., and Hoffman, A., "The Descent Engine for The Lunar Module," Proceedings of the 3rd Propulsion Joint Specialist Conference, No. 67-521, 1967.
  11. Garcia, A. L., and Baras, F., "Direct Simulation Monte Carlo: Novel Applications and New Extensions," Proceedings of the 3rd workshop on Modeling of Chemical Reaction Systems, 1997.
  12. Menter, F. R., Kuntz, M., and Langtry, R., "Ten Years of Industrial Experience with the SST Turbulence Model," Proceedings of the 4th International Symposium on Turbulence, Heat and Mass Transfer, 2003, pp.625-632.
  13. Lee, S. R., Kim, Y. J., "A Study on the Rarefied Gas Flow Fields in Micro-Conical Nozzle Using DSMC method," Proceedings of the KSME Conference, 1999, pp.385-390.
  14. Bird, G. A., "Molecular Gas Dynamics and the Direct Simulation of Gas Flows," Oxford University Press Inc, 1994.
  15. Gobbert, M. K., Cale, T. S., "The Effect of Knudsen Number on Transient Times During Chemical Vapor Deposition," International Journal for Multiscale Computational Engineering, Vol. 4, No. 3, 2006, pp.319-335. https://doi.org/10.1615/IntJMultCompEng.v4.i3.30
  16. Lee, J. H., Ryu, D. H., and Lee, T. H., "The Study on the Two-Phase Flow in the Microchannel Using DSMC(Direct Simulation Monte Carlo) Method," Trans. Korean Soc. Mech. Eng. B, Vol. 27, No. 12, 2003, pp.1667-1672. https://doi.org/10.3795/KSME-B.2003.27.12.1667
  17. Kim, M. G., Kwon, O. J., Chung, C. H., and Yoon, S. J., "A DSMC Technique for Solving 2-D Rarefied Gas Flows on Unstructured Triangular Meshes," Journal of the Korean Society for Aeronautical and Space Sciences, Vol. 26, No. 8, 1998, pp.20-30.
  18. Jeon, W. J., Baek, S. W., Park, J. H., and Ha, D. S., "Rocket Plume Analysis with DSMC Method," KSPE Journal, Vol. 18, No. 5, 2014, pp.54-61. https://doi.org/10.6108/KSPE.2014.18.5.054