• 제목/요약/키워드: Direct Numerical Method

검색결과 688건 처리시간 0.022초

직접해법 기반의 FETI 알고리즘의 개선 (Further Improvement of Direct Solution-based FETI Algorithm)

  • 강승훈;공두현;신상준
    • 한국전산구조공학회논문집
    • /
    • 제35권5호
    • /
    • pp.249-257
    • /
    • 2022
  • 본 논문은 직접해법 기반 FETI 알고리즘의 개선 방안을 제시하였다. 개선 대상은 FETI-local로, 해당 알고리즘은 국부 Lagrange 승수를 통해 부영역 간 경계 문제를 정의한다. 부영역 경계 강성 및 하중 계산 단계의 경우, 전체 역행렬 계산 등 과도한 비용을 요구했던 기존 알고리즘을 Boolean 행렬 특성을 활용한 선택적 역행렬 성분 계산으로 개선하였다. 전역 경계 행렬식 계산 단계의 경우, 기존 단일 프로세서 연산을 다중 프론탈 기법 기반 병렬 연산으로 대체하였다. 제시된 FETI-local 알고리즘의 성능 개선은 64만 자유도 수치 예제를 통해 검증되었으며, 기존 대비 최대 97.8%의 계산 시간 감소가 달성되었다. 또한, 기존 대비 안정적이고 개선된 확장성이 가속 지표를 통해 확인되었다. 추가로, 432만 자유도의 대용량 계산 성능 비교가 제시된 알고리즘과 상용 프로그램인 ANSYS 간에 수행되었다. 그 결과, 계산 시간 측면에선 ANSYS가 우수하였으나, 프로세서 수에 따른 가속 성능 증가율 측면에선 제시된 알고리즘이 우수한 것이 확인되었다.

직교격자 기반 수치기법을 이용한 부가저항 해석 (Analysis of Added Resistance using a Cartesian-Grid-based Computational Method)

  • 양경규;이재훈;남보우;김용환
    • 대한조선학회논문집
    • /
    • 제50권2호
    • /
    • pp.79-87
    • /
    • 2013
  • In this paper, an Euler equation solver based on a Cartesian-grid method and non-uniform staggered grid system is applied to predict the ship motion response and added resistance in waves. Water, air, and solid domains are identified by a volume-fraction function for each phase and in each cell. For capturing the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with a weighed line interface calculation (WLIC) method. The volume fraction of solid body embedded in a Cartesian-grid system is calculated by a level-set based algorithm, and the body boundary condition is imposed by volume weighted formula. Added resistance is calculated by direct pressure integration on the ship surface. Numerical simulations for a Wigley III hull and an S175 containership in regular waves have been carried out to validate the newly developed code, and the ship motion responses and added resistances are compared with experimental data. For S175 containership, grid convergence test has been conducted to investigate the sensitivity of grid spacing on the motion responses and added resistances.

MULTIPLE LINEAR REGRESSION APPROACH FOR PRODUCTIVITY ESTIMATION OF BULLDOZERS

  • Abbas Rashidi;Hoda Rashidi Nejad;Amir H. Behzadan
    • 국제학술발표논문집
    • /
    • The 3th International Conference on Construction Engineering and Project Management
    • /
    • pp.1140-1147
    • /
    • 2009
  • Productivity measurement of construction machinery is a significant issue faced by many contractors especially those involved in earthwork projects. Traditionally, equipment production rate has been estimated using data available in manufacturers' catalogues, results of previous construction projects, or personal experience and assessments of the site personnel. Actual production rates obtained after the completion of a project demonstrate the fact that most of these methods fail to provide accurate results and as a direct consequence, may lead to unrealistic project cost estimations prepared by the contractors. What makes this more critical is that in most cases, inadequate cost estimations lead the entire project to exceed the initial budget or fall behind the schedule. In this paper, a linear regression method to estimate bulldozer productivity is introduced. This method has been developed using SPSS-16 software package. The presented method is used to estimate the productivity of Komatsu D-155A1 series which is commonly used in many earthmoving operations in Iran. The data required for the numerical analysis has been collected from actual site observation and productivity measurement of 60 pieces of D-155A1 series currently being used in several earthmoving projects in Iran. Comparative analysis of the output data of the presented regression method and the existing productivity tables provided by the manufacturer shows that when compared to the actual productivity data collected on the jobsite, a significant increase in accuracy and a remarkable reduction of data variance can be achieved by using the presented regression method.

  • PDF

Application of direct tension force transfer model with modified fixed-angle softened-truss model to finite element analysis of steel fiber-reinforced concrete members subjected to Shear

  • Lee, Deuck Hang;Hwang, Jin-Ha;Ju, Hyunjin;Kim, Kang Su
    • Computers and Concrete
    • /
    • 제13권1호
    • /
    • pp.49-70
    • /
    • 2014
  • Steel fiber-reinforced concrete (SFRC) is known as one of the efficient modern composites that can greatly enhance the material performance of cracked concrete in tension. Such improved tensile resistance mechanism at crack interfaces in SFRC members can be heavily influenced by methodologies of treatments of crack direction. While most existing studies have focused on developing the numerical analysis model with the rotating-angle theory, there are only few studies on finite element analysis models with the fixed-angle model approach. According to many existing experimental studies, the direction of principal stress rotated after the formation of initial fixed-cracks, but it was also observed that new cracks with completely different angles relative to the initial crack direction very rarely occurred. Therefore, this study introduced the direct tension force transfer model (DTFTM), in which tensile resistance of the fibers at the crack interface can be easily estimated, to the nonlinear finite element analysis algorithm with the fixed-angle theory, and the proposed model was also verified by comparing the analysis results to the SFRC shear panel test results. The secant modulus method adopted in this study for iterative calculations in nonlinear finite element analysis showed highly stable and fast convergence capability when it was applied to the fixed-angle theory. The deviation angle between the principal stress direction and the fixed-crack direction significantly increased as the tensile stresses in the steel fibers at crack interfaces increased, which implies that the deviation angle is very important in the estimation of the shear behavior of SFRC members.

Reconfigurable Flight Control Design for the Complex Damaged Blended Wing Body Aircraft

  • Ahn, Jongmin;Kim, Kijoon;Kim, Seungkeun;Suk, Jinyoung
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.290-299
    • /
    • 2017
  • Reconfigurable flight control using various kinds of adaptive control methods has been studied since the 1970s to enhance the survivability of aircraft in case of severe in-flight failure. Early studies were mainly focused on the failure of actuators. Recently, studies of reconfigurable flight controls that can accommodate complex damage (partial wing and tail loss) in conventional aircraft were reported. However, the partial wing loss effects on the aerodynamics of conventional type aircraft are quite different to those of BWB(blended wing body) aircraft. In this paper, a reconfigurable flight control algorithm was designed using a direct model reference adaptive method to overcome the instability caused by a complex damage of a BWB aircraft. A model reference adaptive control was incorporated into the inner loop rate control system enhancing the performance of the baseline control to cope with abrupt loss of stability. Gains of the model reference adaptive control were polled out using the Liapunov's stability theorem. Outer loop attitude autopilot was designed to manage roll and pitch of the BWB UAV as well. A 6-DOF dynamic model was built-up, where the normal flight can be made to switch to the damaged state abruptly reflecting the possible real flight situation. 22% of right wing loss as well as 25% loss for both vertical tail and rudder control surface were considered in this study. Static aerodynamic coefficients were obtained via wind tunnel test. Numerical simulations were conducted to demonstrate the performance of the reconfigurable flight control system.

Non-linear time-dependent post-elastic analysis of suspended cable considering creep effect

  • Kmet, S.;Tomko, M.;Brda, J.
    • Structural Engineering and Mechanics
    • /
    • 제22권2호
    • /
    • pp.197-222
    • /
    • 2006
  • In this paper, the non-linear time-dependent closed-form, discrete and combined solutions for the post-elastic response of a geometrically and physically non-linear suspended cable to a uniformly distributed load considering the creep effects, are presented. The time-dependent closed-form method for the particularly straightforward determination of a vertical uniformly distributed load applied over the entire span of a cable and the accompanying deflection at time t corresponding to the elastic limit and/or to the elastic region, post-elastic and failure range of a suspended cable is described. The actual stress-strain properties of steel cables as well as creep of cables and their rheological characteristics are considered. In this solution, applying the Irvine's theory, the direct use of experimental data, such as the actual stress-strain and strain-time properties of high-strength steel cables, is implemented. The results obtained by the closed-form solution, i.e., a load corresponding to the elastic limit, post-elastic and failure range at time t, enable the direct use in the discrete non-linear time-dependent post-elastic analysis of a suspended cable. This initial value of load is necessary for the non-linear time-dependent elastic and post-elastic discrete analysis, concerning incremental and iterative solution strategies with tangent modulus concept. At each time step, the suspended cable is analyzed under the applied load and imposed deformations originated due to creep. This combined time-dependent approach, based on the closed-form solution and on the FEM, allows a prediction of the required load that occurs in the post-elastic region. The application of the described methods and derived equations is illustrated by numerical examples.

직사화기 성능분석을 위한 오차요소별 민감도 식 유도 (A Derivation of Sensitivity Equations of the Error Components to Analyze Performance in the Direct Fire Control System)

  • 김재훈;김의환;이정엽;김건국
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제4권12호
    • /
    • pp.399-408
    • /
    • 2015
  • 직사화기 사격통제장치에서 최적 설계를 위해서는 특정 오차요소가 명중률에 미치는 영향을 파악해야 한다. 이를 위해 가장 좋은 방법은 이들 오차요소에 대한 민감도 식을 구하는 것이나, 체계가 복잡하면 이를 정량적으로 유도하기가 쉽지 않다. 보통 제한된 운용조건에 대해 수치방법으로 민감도를 계산하며, 지상전투차량 등에서 널리 활용되고 있다. 그러나 이 방법은 다량의 시뮬레이션에 의존해야 하므로, 연산 시간이 많이 소요되고 데이터에 의존하므로, 대공화기와 같이 운용조건이 넓게 변화할 경우 민감도가 어떻게 변화할지 직관적으로 이해하는 데 어려움이 있다. 본 논문은 직사화기 탄도에 대한 닫힌 형태 탄도식을 유도하고, 이 식으로부터 오차요소별로 체계 종합오차에 대한 민감도 식을 유도하고, 이들의 영향을 종합하여 명중률을 계산하는 방법을 보인다. 유도된 민감도 식은 수치적분 방법과 달리 연산처리 시간이 짧으면서도 관련 변수 간 물리적 이해가 쉬워 체계설계 시 다양한 운용조건에 대해 편리하게 활용될 수가 있다. 30미리 탄에 대한 시뮬레이션을 통해 본 논문의 유용성을 보인다.

개별요소법을 이용한 쇄석재료의 직접전단시험 모델링 (Modeling Direct Shear Test of Crushed Stone Using DEM)

  • 조남각;유충식;이대영
    • 한국지반공학회논문집
    • /
    • 제24권1호
    • /
    • pp.15-23
    • /
    • 2008
  • 본 연구에서는 개별요소법에 근거한 상용 수치해석 프로그램인 PFC2D를 이용하여 조립재인 쇄석의 전단특성 모델링을 수행하였다. 본 연구를 통하여 기존의 연속체 해석에서 고려하기 힘든 조립질 재료의 입도분포 및 공극, 불규칙한 형상을 모델링 할 수 있었다. 또한, 대형직접전단시험을 수행한 실험결과와 비교를 통해 입자특성과 관련한 조립질 재료의 고유 특성을 본 연구에서 모델링한 불연속체 모델링으로 모사할 수 있음을 알 수 있었다. 이러한 모델링 기법은 향후 다양한 입도 및 공극특성을 갖는 조립질 재료의 현장 강도 특성을 예측하는데 도움이 될 수 있다.

Modeling and experimental verification of phase-control active tuned mass dampers applied to MDOF structures

  • Yong-An Lai;Pei-Tzu Chang;Yan-Liang Kuo
    • Smart Structures and Systems
    • /
    • 제32권5호
    • /
    • pp.281-295
    • /
    • 2023
  • The purpose of this study is to demonstrate and verify the application of phase-control absolute-acceleration-feedback active tuned mass dampers (PCA-ATMD) to multiple-degree-of-freedom (MDOF) building structures. In addition, servo speed control technique has been developed as a replacement for force control in order to mitigate the negative effects caused by friction and inertia. The essence of the proposed PCA-ATMD is to achieve a 90° phase lag for a structure by implementing the desired control force so that the PCA-ATMD can receive the maximum power flow with which to effectively mitigate the structural vibration. An MDOF building structure with a PCA-ATMD and a real-time filter forming a complete system is modeled using a state-space representation and is presented in detail. The feedback measurement for the phase control algorithm of the MDOF structure is compact, with only the absolute acceleration of one structural floor and ATMD's velocity relative to the structure required. A discrete-time direct output-feedback optimization method is introduced to the PCA-ATMD to ensure that the control system is optimized and stable. Numerical simulation and shaking table experiments are conducted on a three-story steel shear building structure to verify the performance of the PCA-ATMD. The results indicate that the absolute acceleration of the structure is well suppressed whether considering peak or root-mean-square responses. The experiment also demonstrates that the control of the PCA-ATMD can be decentralized, so that it is convenient to apply and maintain to real high-rise building structures.

LES를 이용한 직사각형 개수로 난류흐름의 조직구조 분석 (Analysis of Coherent Structure of Turbulent Flows in the Rectangular Open-Channel Using LES)

  • 반채웅;최성욱
    • 대한토목학회논문집
    • /
    • 제34권5호
    • /
    • pp.1435-1442
    • /
    • 2014
  • 본 연구에서는 OpenFOAM에서 제공하는 소스코드를 이용하여 매끄러운 하상의 직사각형 개수로 흐름에 대해 수치모의를 수행하였다. 난류 해석을 위해 LES를 수행하였는데, 비등방성 잔여 응력항을 모델링하기 위해서 Germano et al. (1991)이 제시한 Dynamic Subgrid-scale 모형을 이용하였다. 조직구조를 분석하기 위하여 Lu and Willmarth (1973)가 제시한 uw 사분면기법을 이용하여 순간레이놀즈 응력이 레이놀즈 응력에 미치는 영향을 기여율과 시간비로 나누어 분석하였다. LES 모의 결과를 토대로 기존 실험 및 DNS 모의 결과와 비교하고 분석하였다. 매끈한 하상을 가진 개수로 흐름에서 완충층 이후의 구간에서 분출현상이 쓸기현상에 비해 레이놀즈 응력의 양의 생성에 기여하는 바가 크지만, 분출현상에 비해 쓸기현상의 발생빈도가 큰 것으로 확인되었다.