• Title/Summary/Keyword: Direct Matrix Converter

Search Result 27, Processing Time 0.024 seconds

Design and Simulation of High Efficiency PWM Modulation Method for Three-phase Matrix Converter (3상 매트릭스 컨버터의 고효율 변조방법 설계 및 시뮬레이션)

  • Lim, Hyun-Joo;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.337-344
    • /
    • 2012
  • A matrix converter is used for converting AC/AC power directly. In order to generate sinusoidal input/output waveform in matrix converter, it uses nine bidirectional switches and PWM modulation. This paper presents an analytical averaged loss model of matrix converter with DDPWM(direct duty ratio PWM) and proposes a new switching method for reducing switching losses. A Mathematical loss models with average magnitude of voltage/current are classed as conduction and switching loss. The proposed switching pattern is improved with existing DDPWM. To prove improved efficiency with proposed DDPWM, this paper compares losses between suggested switching pattern and conventional switching pattern using mathematical and simulation method. Each loss types are influenced by environmental factors such as temperature, switching frequency, output current and modulation method.

Optimal Control Scheme for Matrix Converter (매트릭스컨버터의 최적제어기법 고찰)

  • Cho, Choon-Ho;Mo, Dong-Yeong;Lee, Sang-Chul;Choi, Chang-Young;Lee, Gun-Sik;Kim, Tae-Woong;Park, Gwi-Geun
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.21-22
    • /
    • 2010
  • Matrix converter is direct power conversion system. Matrix converter has many merits that possible bidirectional power flow, input power factor own control and system without DC-link. But matrix converter has some demerits that need many switching devices and switching loss. This paper suggest optimal matrix converter control scheme for improvement for switching loss part. Proposed control scheme verified that 10% improvement in efficiency, input current's harmonic loss and output voltage's EMI improvement.

  • PDF

Single Phase Utility Frequency AC-High Frequency AC Matrix Converter Using One-Chip Reverse Blocking IGBTs based Bidirectional Switches

  • Hisayuki, Sugimura;Kwon, Soon-Kurl;Lee, Hyun-Woo;Mutsuo, Nakaoka
    • Proceedings of the KIEE Conference
    • /
    • 2006.10d
    • /
    • pp.125-128
    • /
    • 2006
  • This paper presents a novel type soft switching PWM power frequency AC-AC converter using bidirectional active switches or single phase utility frequency AC-high frequency AC matrix converter. This converter can directly convert utility frequency AC (UFAC, 50Hz/60Hz) power to high frequency AC (HFAC) power ranging more than 20kHz up to 100kHz. A novel soft switching PWM prototype of high frequency multi-resonant PWM controlled UFAC-HFAC matrix converter using antiparallel one-chip reverse blocking IGBTs manufactured by IXYS corp. is based on the soft switching resonance with asymmetrical duty cycle PWM strategy. This single phase UFAC-HFAC matrix converter has some remarkable features as electrolytic capacitor DC busline linkless topology, unity power factor correction and sine-wave line current shaping, simple configuration with minimum circuit components, high efficiency and downsizing. This series load resonant UFAC-HFAC matrix converter, incorporating bidirectional active power switches is developed and implemented for high efficiency consumer induction heated food cooking appliances in home uses and business-uses. Its operating performances as soft switching operating ranges and high frequency effective power regulation characteristics are illustrated and discussed on the basis of simulation and experimental results.

  • PDF

Control and Operating Characteristics of Three-Phase Matrix Converter with Unity Power Factor by Direct Duty-Ratio Modulation Method (단위 역률을 갖는 직접 시비율 변조방식 3상 매트릭스 컨버터의 제어 및 동작 특성)

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.142-149
    • /
    • 2009
  • This paper investigates operating characteristics of three-phase matrix converter with unity input power factor by direct duty-ratio pulse-width modulation in the case of balanced and unbalanced load. It can be found from the system analysis that (1) The control algorithm for unity power factor is not related to the variables of load sides but the input voltages, (2) With the balanced three-phase load except for the pure reactive load, the unity input power factor can be achieved, (3) In the case of the unbalanced linear load, the equivalent input characteristics of the matrix converter can be seen like the nonlinear resister, (4) When the input frequency and the output frequency have the specific relationship, each input phases have the same sharing of the average power. The feasibility and validity of the analysis were verified by simulation and experimental results.

Decoupled Control of Doubly Fed Induction Machine Fed by SVM Matrix Converter

  • Dendouga, Abdelhakim;Abdessemed, Rachid;Bendaas, Mohamed Lokmane
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.4
    • /
    • pp.491-498
    • /
    • 2008
  • In this paper a decoupled control of a doubly-fed induction machine(DFIM) feed by a matrix converter is presented. It provides a robust regulation of the stator side active and reactive powers by the direct and quadratic components of the stator current vector, presented in a line-voltage-oriented reference frame. In this case, the stator windings are directly connected to the line grid, while the rotor windings are supplied by this later through a matrix converter controlled by a space vector modulation technique. The proposed solution is suitable for both energy generation and electrical drive applications with restricted speed variation range.

Direct Duty Ratio Pulse Width Modulation Method for Matrix Converters

  • Li, Yulong;Choi, Nam-Sup;Han, Byung-Moon;Kim, Kyoung-Min;Lee, Buhm;Park, Jun-Hyub
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.660-669
    • /
    • 2008
  • This paper presents a new carrier based pulse-width modulation (PWM) method for matrix converters. By using the concept of average over one switching period, the modulation algorithm and the required equations are derived to synthesize the desired output voltage and to achieve the controlled input power factor. The proposed method uses a continuous carrier and the predetermined duty ratio signals to directly generate the gating signals and, thus, is referred to as "direct duty ratio PWM (DDPWM)". The feasibility and validity of the proposed method were verified by simulation and experiment.

A New SVM Method to Reduce Common-Mode Voltage of Five-leg Indirect Matrix Converter Fed Open-End Load Drives

  • Tran, Quoc-Hoan;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.641-652
    • /
    • 2017
  • This paper proposes a cost-effective topology to drive a three-phase open-end load based on a five-leg indirect matrix converter (IMC) and a space vector modulation (SVM) method. By sharing an inverter leg with two load terminals, the proposed topology can reduce the number of power switches when compared to topologies based on a direct matrix converter or a six-leg IMC. The new SVM method uses only the active vectors that do not produce common-mode voltage (CMV), which results in zero CMV across the load phase and significantly reduces the peak value of the CMV at the load terminal. Furthermore, the proposed drive system can increase the voltage transfer ratio up to 1.5 and provide a superior performance in terms of an output line-to-line voltage with a three-level pulse-width modulation waveform. Simulation and experimental results are given to verify the effectiveness of the proposed topology and the new SVM method.

Three-Phase Isolated Capacitorless Charger with a Single-Stage Power Converter (1단 전력변환기를 가진 3상 절연형 커패시터리스 충전기)

  • Chae, Soo-Yong;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.11
    • /
    • pp.84-92
    • /
    • 2014
  • In this paper, we propose a three-phase isolated electrolytic capacitorless charger available for quick charger. In the proposed charger, electrolytic capacitor in DC link is eliminated by direct conversion from AC input to DC output. Conventional chargers are two stage structure including AC-DC and DC-DC converters, but the proposed charger can be simplified into single stage converter by using a matrix converter. And the waveform of input currents is improved by giving the weighting factor to the duty ratio of auxiliary switches. In order to verify the effectiveness of the proposed charger, simulations are carried out and a 1.2kW charger was constructed and experimented.

Multi-Step Commutation and Control Policies for Matrix Converters

  • Hofmann W.;Ziegler M.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.795-802
    • /
    • 2001
  • The commutation and control in matrix converters is more complicated as in voltage source converters. Natural freewheeling paths do not exist and the theoretic absent storage elements result in a direct coupled system of load and line currents as well as voltages. The paper offers an overview about staggered commutation and control policies in matrix converters. Based on the knowledge about load current direction and the signs of the line to line input voltages different multi-step commutation policies were derived. This paper examines the application of that policies in the case of space vector modulation and direct control methods with the focus on the resulting effects to the reference output voltage deviation.

  • PDF

Multi-Step Commutation and Control Policies for Matrix Converters

  • Hofmann, Wilfried;Ziegler, Marcus
    • Journal of Power Electronics
    • /
    • v.3 no.1
    • /
    • pp.24-32
    • /
    • 2003
  • The commutation and control in matrix converters is more complicated as in voltage source converters. Natural freewheeling paths do not exist and the theoretic absent storage elements result in a direct coupled system of load and line currents as well as voltages. The paper offers an overview about staggered commutation and control policies in matrix converters. Based on the knowledge about load current direction and the signs of the line to line input voltages different multi-step commutation policies were derived. This paper examines the application of that policies in the case of space vector modulation and direct control methods with the focus on the resulting effects to the reference output voltage deviation.