DOI QR코드

DOI QR Code

A New SVM Method to Reduce Common-Mode Voltage of Five-leg Indirect Matrix Converter Fed Open-End Load Drives

  • Tran, Quoc-Hoan (School of Electrical Engineering, University of Ulsan) ;
  • Lee, Hong-Hee (School of Electrical Engineering, University of Ulsan)
  • Received : 2016.07.11
  • Accepted : 2017.02.01
  • Published : 2017.05.20

Abstract

This paper proposes a cost-effective topology to drive a three-phase open-end load based on a five-leg indirect matrix converter (IMC) and a space vector modulation (SVM) method. By sharing an inverter leg with two load terminals, the proposed topology can reduce the number of power switches when compared to topologies based on a direct matrix converter or a six-leg IMC. The new SVM method uses only the active vectors that do not produce common-mode voltage (CMV), which results in zero CMV across the load phase and significantly reduces the peak value of the CMV at the load terminal. Furthermore, the proposed drive system can increase the voltage transfer ratio up to 1.5 and provide a superior performance in terms of an output line-to-line voltage with a three-level pulse-width modulation waveform. Simulation and experimental results are given to verify the effectiveness of the proposed topology and the new SVM method.

Keywords

References

  1. S. Weerasinghe, U. K. Madawala, and D. J. Thrimawithana, "A matrix converter-based bidirectional contactless grid interface," IEEE Trans. Power Electron., Vol. 32, No. 3, pp. 1755-1766, Mar. 2017. https://doi.org/10.1109/TPEL.2016.2557963
  2. J. Lei, B. Zhou, J. Bian, J. Wei, Y. Zhu, J. Yu, and Y. Yang, "Feedback control strategy to eliminate the input current harmonics of matrix converter under unbalanced input voltages," IEEE Trans. Power Electron., Vol. 32, No. 1, pp. 878-888, Jan. 2017. https://doi.org/10.1109/TPEL.2016.2539398
  3. C. Xia, S. Li, Y. Yan, and T. Shi, "Research on linear output voltage transfer ratio for ultrasparse matrix converter," IEEE Trans. Power Electron., Vol. 31, No. 3, pp. 1811-1815, Mar. 2016. https://doi.org/10.1109/TPEL.2015.2428294
  4. J. Lei, B. Zhou, J. Bian, X. Qin, and J. Wei, "A simple method for sinusoidal input currents of matrix converter under unbalanced input voltages," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 21-25, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2456938
  5. Y. Li, N. S. Choi, B. M. Han, and E. C. Nho, "Direct duty-ratio modulated fault-tolerant strategy for matrix converter-fed motor drives," Journal of Power Electronics, Vol. 12, No. 1, pp. 24-32, Jan. 2012. https://doi.org/10.6113/JPE.2012.12.1.24
  6. C. Gu, H. S. Krishnamoorthy, P. N. Enjeti, Z. Zheng, and Y. Li, "A medium-voltage matrix converter topology for wind power conversion with medium frequency transformers," Journal of Power Electronics, Vol. 14, No. 6, pp. 1166- 1177, Nov. 2014. https://doi.org/10.6113/JPE.2014.14.6.1166
  7. S. S. Sebtahmadi, H. Pirasteh, S. H. A. Kaboli, A. Radan, and S. Mekhilef, "A 12-sector space vector switching scheme for performance improvement of matrixconverter- based DTC of IM drive," IEEE Trans. Power Electron., Vol. 30, No. 7, pp. 3804-3817, Jul. 2015. https://doi.org/10.1109/TPEL.2014.2347457
  8. D. T. Nguyen, H. H. Lee, and T. W. Chun, "A carrier-based pulse width modulation method for indirect matrix converters," Journal of Power Electronics, Vol. 12, No. 3, pp. 448-457, May 2012. https://doi.org/10.6113/JPE.2012.12.3.448
  9. H. Tran, N. V. Nguyen, and H.-H. Lee, "An effective carrier-based modulation strategy to reduce the switching losses for indirect matrix converters," Journal of Power Electronics, Vol. 15, No. 3, pp. 702-711, May 2015. https://doi.org/10.6113/JPE.2015.15.3.702
  10. M. Hamouda, H. F. Blanchette, and K. Al-Haddad, "Indirect matrix converters' enhanced commutation method," IEEE Trans. Ind. Electron., Vol. 62, No. 2, pp. 671-679, Feb. 2015. https://doi.org/10.1109/TIE.2014.2341583
  11. M. Hamouda, H. F. Blanchette, and K. Al-Haddad, "Unity power factor operation of IMC tied to unbalanced grid," IEEE Trans. Power Electron., Vol. 31, No. 2, pp. 1095- 1107, Feb. 2016. https://doi.org/10.1109/TPEL.2015.2421480
  12. H.-N. Nguyen and H.-H. Lee, "A DSVM method for matrix converters to suppress common-mode voltage with reduced switching losses," IEEE Trans. Power Electron., Vol. 31, No. 6, pp. 4020-4030, Jun. 2016. https://doi.org/10.1109/TPEL.2015.2471078
  13. Q. Guan, P. Yang, Q. Guan, X. Wang, and Q. Wu, "A singular value decomposition based space vector modulation to reduce the output common-mode voltage of DMCs," Journal of Power Electronics, Vol. 15, No. 6, pp. 936-945, Nov. 2015.
  14. M. R. Baiju, K. K. Mohapatra, R. S. Kanchan, and K. Gopakumar, "A dual two-level inverter scheme with common mode voltage elimination for an induction motor drive," IEEE Trans. Power Electron., Vol. 19, No. 3, pp. 794-805, May 2004. https://doi.org/10.1109/TPEL.2004.826514
  15. V. T. Somasekhar, S. Srinivas, B. P. Reddy, C. N. Reddy, and K. Sivakumar, "Pulse width-modulated switching strategy for the dynamic balancing of zero-sequence current for a dual-inverter fed open-end winding induction motor drive," IET Electric Power Applications, Vol. 1, No. 4, pp. 591-600, Jul. 2007. https://doi.org/10.1049/iet-epa:20060407
  16. V. T. Somasekhar, S. Srinivas, and K. K. Kumar, "Effect of zero-vector placement in a dual-inverter fed open-end winding induction-motor drive with a decoupled space-vector PWM strategy," IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp. 2497-2505, Jun. 2008. https://doi.org/10.1109/TIE.2008.918644
  17. K. R. Sekhar and S. Srinivas, "Discontinuous decoupled PWMs for reduced current ripple in a dual two-level inverter fed open-end winding induction motor drive," IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2493- 2502, May 2013. https://doi.org/10.1109/TPEL.2012.2215344
  18. S. Srinivas and K. R. Sekhar, "Theoretical and experimental analysis for current in a dual-inverter-fed open-end winding induction motor drive with reduced switching PWM," IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4318-4328, Oct. 2013. https://doi.org/10.1109/TIE.2012.2209615
  19. N. Bodo, M. Jones, and E. Levi, "A space vector PWM with common-mode voltage elimination for open-end winding five-phase drives with a single DC supply," IEEE Trans. Ind. Electron., Vol. 61, No. 5, pp. 2197-2207, May 2014. https://doi.org/10.1109/TIE.2013.2272273
  20. J. Kalaiselvi and S. Srinivas, "Bearing currents and shaft voltage reduction in dual-inverter-fed open-end winding induction motor with reduced CMV PWM methods," IEEE Trans. Ind. Electron., Vol. 62, No. 1, pp. 144-152, Jan. 2015. https://doi.org/10.1109/TIE.2014.2336614
  21. P. Srinivasan, B. L. Narasimharaju, and N. V. Srikanth, "Space-vector pulse width modulation scheme for open-end winding induction motor drive configuration," IET Power Electronics, Vol. 8, No. 7, pp. 1083-1094, Jul. 2015. https://doi.org/10.1049/iet-pel.2014.0396
  22. H. Nian and Y. Zhou, "Investigation and suppression of current zero crossing phenomenon for a semicontrolled open-winding PMSG system," IEEE Trans. Power Electron., Vol. 32, No. 1, pp. 602-612, Jan. 2017. https://doi.org/10.1109/TPEL.2016.2523252
  23. H. Nian, Y. Zhou, and H. Zeng, "Zero-sequence current suppression strategy for open winding PMSG fed by semicontrolled converter," IEEE Trans. Power Electron., Vol. 31, No. 1, pp. 711-720, Jan. 2016. https://doi.org/10.1109/TPEL.2015.2400438
  24. Y. Zhou and H. Nian, "Zero-sequence current suppression strategy of open-winding PMSG system with common DC bus based on zero vector redistribution," IEEE Trans. Ind. Electron., Vol. 62, No. 6, pp. 3399-3408, Jun. 2015. https://doi.org/10.1109/TED.2015.2461657
  25. Q. An, J. Liu, Z. Peng, L. Sun, and L. Sun, "Dual-space vector control of open-end winding permanent magnet synchronous motor drive fed by dual inverter," IEEE Trans. Power Electron., Vol. 31, No. 12, pp. 8329-8342, Dec. 2016. https://doi.org/10.1109/TPEL.2016.2520999
  26. S. Chowdhury, P. W. Wheeler, C. Gerada, and C. Patel, "Model predictive control for a dual-active bridge inverter with a floating bridge," IEEE Trans. Ind. Electron., Vol. 63, No. 9, pp. 5558-5568, Sep. 2016. https://doi.org/10.1109/TIE.2016.2564949
  27. M. Boby, S. Pramanick, R. S. Kaarthik, S. A. Rahul, K. Gopakumar, and L. Umanand, "Multilevel dodecagonal voltage space vector structure generation for open-end winding IM using a single DC source," IEEE Trans. Ind. Electron., Vol. 63, No. 5, pp. 2757-2765, May 2016. https://doi.org/10.1109/TIE.2015.2511162
  28. A. Edpuganti and A. K. Rathore, "New optimal pulsewidth modulation for single DC-link dual-inverter fed open-end stator winding induction motor drive," IEEE Trans. Power Electron., Vol. 30, No. 8, pp. 4386-4393, Aug. 2015. https://doi.org/10.1109/TPEL.2014.2353415
  29. A. D. kiadehi, K. E. K. Drissi, and C. Pasquier, "Angular modulation of dual-inverter fed open-end motor for electrical vehicle applications," IEEE Trans. Power Electron., Vol. 31, No. 4, pp. 2980-2990, Apr. 2016. https://doi.org/10.1109/TPEL.2015.2453433
  30. K. K. Mohapatra and N. Mohan, "Open-end winding induction motor driven with matrix converter for common-mode elimination," in International Conference on Power Electronics, Drives and Energy Systems(PEDES), pp. 1-6, Dec. 2006.
  31. R. K. Gupta, K. K. Mohapatra, A. Somani, and N. Mohan, "Direct-matrix-converter-based drive for a three-phase open-end-winding AC machine with advanced features," IEEE Trans. Ind. Electron., Vol. 57, No. 12, pp. 4032-4042, Dec. 2010. https://doi.org/10.1109/TIE.2010.2043045
  32. J. Rzasa, "Research on dual MC feeding an open-end-winding load controlled with the use of rotating space vectors," in 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 4919-4924, Nov. 2013.
  33. J. Rzasa and G. Garus, "Research on dual MC feeding an open-end-winding load controlled with the use of rotating space vectors," in 39th Annual Conference of the IEEE Industrial Electronics Society (IECON), pp. 4925-4930, Nov. 2013.
  34. R. Baranwal, K. Basu, and N. Mohan, "Carrier-based implementation of SVPWM for dual two-level VSI and dual matrix converter with zero common-mode voltage," IEEE Trans. Power Electron., Vol. 30, No. 3, pp. 1471- 1487, Mar. 2015. https://doi.org/10.1109/TPEL.2014.2316528
  35. S. M. Ahmed, H. Abu-Rub, and Z. Salam, "Common-mode voltage elimination in a three-to-five-phase dual matrix converter feeding a five-phase open-end drive using space-vector modulation technique," IEEE Trans. Ind. Electron., Vol. 62, No. 10, pp. 6051-6063, Oct. 2015. https://doi.org/10.1109/TIE.2015.2420038
  36. S. M. Ahmed, Z. Salam, and H. Abu-Rub, "Common-mode voltage elimination in a three-to-seven phase dual matrix converter feeding a seven phase open-end induction motor drive," in IEEE Conference on Energy Conversion (CENCON), pp. 207-212, Oct. 2014.
  37. J. Riedemann, R. Pena, R. Cardenas, J. Clare, P. Wheeler, and M. Rivera, "Switching strategies for an indirect matrix converter fed open-end load," in IEEE International Symposium on Industrial Electronics (ISIE), pp. 1-6, May 2013.
  38. J. Riedemann, J. C. Clare, P. W. Wheeler, R. Blasco-Gimenez, M. Rivera, and R. Pena, "Open-end winding induction machine fed by a dual-output indirect matrix converter," IEEE Trans. Ind. Electron., Vol. 63, No. 7, pp. 4118-4128, Jul. 2016. https://doi.org/10.1109/TIE.2016.2531020
  39. A. Somani, R. K. Gupta, K. K. Mohapatra, K. Basu, and N. Mohan, "Modulation strategies for direct-link drive for open-end winding AC machines," in IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1863-1868, May 2009.
  40. Q.-H. Tran, T. D. Nguyen, and H.-H. Lee, "A SVM method for five-leg indirect matrix converters with open-end winding load," in 9th International Conference on Power Electronics and ECCE Asia (ICPE-ECCE Asia), pp. 934- 939, Jun. 2015.
  41. M. P. Akter, S. Mekhilef, N. M. L. Tan, and H. Akagi, "Stability and performance investigations of model predictive controlled active-front-end (AFE) rectifiers for energy storage systems," Journal of Power Electronics, Vol. 15, No. 1, pp. 202-215, Jan. 2015. https://doi.org/10.6113/JPE.2015.15.1.202
  42. A. Somani, R. K. Gupta, K. K. Mohapatra, and N. Mohan, "On the causes of circulating currents in PWM drives with open-end winding AC machines," IEEE Trans. Ind. Electron., Vol. 60, No. 9, pp. 3670-3678, Sep. 2013. https://doi.org/10.1109/TIE.2012.2208430

Cited by

  1. Reverse matrix converter control method for PMSM drives using DPC 2017, https://doi.org/10.1080/00207217.2017.1382012