• Title/Summary/Keyword: Direct Fired Furnace

Search Result 8, Processing Time 0.025 seconds

Effects of Combustion Characteristics of the Burners for Non-Oxidizing Direct Fired Furnaces on the Oxidization of the Surface of Steel Plate (무산화 직화로 버너의 연소특성이 강재표면의 산화에 미치는 영향)

  • Park, Heung Soo;Riu, Kap Jong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.3
    • /
    • pp.330-341
    • /
    • 1999
  • An experimental study for the two types of burners used in the non-oxidizing direct fired furnaces of the heat treatment process for the cold rolled plate has been carried out to investigate the combustion characteristics and the oxidization of the surface of steel plate. A steep temperature gradient and entrainment of residual oxygen were found near the heating surface in the flame of the nozzle mixing burner which has strong swirl velocity component. It was concluded that the elimination of the residual oxygen and the increase of the temperature of combustion gas on the heating surface are needed to enhance the performance of the burners for application to the non-oxidizing direct fired furnaces.

A Study of Optimal Distribution of Gas Temperature in Directly-Fired Reheating Furnace (직접 가열식 가열로 내 최적 분위기온도 분포 해석에 관한 연구)

  • Jeong, Eui-Soo;Shim, Sung-Min;Kim, Young-Deuk;Kang, Deok-Hong;Kim, Woo-Seung
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2122-2125
    • /
    • 2008
  • Because the reheating furnace consumes a large amount of energy to heat up the slabs, it is very important to find an optimal temperature patterns in the furnace for energy saving as well as uniform target temperature at the exit of the furnace. In this study, the temperature profiles in the slab are determined by solving the transient one-dimensional heat conduction equation in conjunction with boundary conditions with total heat exchange factors. The optimal temperature patterns are obtained to minimize the fuel consumption with satisfying the predetermined constraint conditions. The design optimization is performed by using a genetic algorithm and the optimal results are validated with results obtained from the PIDO tool, called as P.I.A.n.O.

  • PDF

2D Heat Transfer Model for the Prediction of Temperature of Slab in a Direct-Fired Reheating Furnace (가열로 내 슬랩의 온도 예측을 위한 2차원 열전달 모델)

  • Lee Dong-Eun;Park Hae-Doo;Kim Man-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.10 s.253
    • /
    • pp.950-956
    • /
    • 2006
  • A mathematical heat transfer model for the prediction of heat flux on the slab surface and temperature distribution in the slab has been developed by considering the thermal radiation in the furnace and transient conduction governing equations in the slab, respectively. The furnace is modeled as radiating medium with spatially varying temperature and constant absorption coefficient. The slab is moved with constant speed through non-firing, charging, preheating, heating, and soaking zones in the furnace. Radiative heat flux which is calculated from the radiative heat exchange within the furnace modeled using the FVM by considering the effect of furnace wall, slab, and combustion gases is applied as the boundary condition of the transient conduction equation of the slab. Heat transfer characteristics and temperature behavior of the slab is investigated by changing such parameters as absorption coefficient and emissivity of the slab. Comparison with the experimental work shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace.

A Study on Wire-rope Type Furnace Scaffolding and Its Lifting System for Large-sized Boiler (대형 보일러 와이어로프 노내비계 및 인양시스템에 관한 연구)

  • HA, Seung Woo;Lee, Tae Ho;Lee, Hae Seung;Kim, Jeung Min;You, Tai Woo;Cho, Sun Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.7
    • /
    • pp.679-683
    • /
    • 2016
  • Boilers of large-sized coal-fired power plants are being operated under very poor conditions such as continuous operation or repeating of start-up and shutdown for a stable supply of electricity. Thus periodic inspection and maintenance are required to ensure reliability of operation. The loads of existing scaffolding systems for the maintenance of boilers are concentrated in the lower parts structurally, which may cause a serial collapse of the overall scaffolding system when there are problems in some members. Therefore, in this study, a safe furnace scaffolding system is developed by dispersing the loads in the upper part, as well as minimizing the hazards of serial collapsing. In addition, for cases where the direct installation of furnace scaffolding is challenging owing to the structure of the boiler tube, a lifting system for the installation of furnace scaffolding is developed so that furnace scaffolding can be supported to secure the integrity of the power generating facility.

Improvement of Coating Adherence of Hot-dip Galvanized Sheet Steels (용융아연 도금강판의 도금밀착성 개선)

  • 김종상;배대철
    • Journal of the Korean institute of surface engineering
    • /
    • v.24 no.1
    • /
    • pp.18-24
    • /
    • 1991
  • In the present work the adhesion failure of a hot-dip galvanized coating has been studied as a function gas composition temperature of strip and of atmospheric gas in furnace. The adhesion failure of the hot-dip galvani-zed coating is classified as three mechanisms : carbon deposition, oxide film formation and alloy layer formation. The adhesion failure due to oxide film formation decreased markedly by increasing the gases temperature of direct fired furnace(DFF) in order to improve the reducing ability of steel strip. Optimum conditions of operating and manufacturing facilities for improving the coating adherence are suggested by analyzing the interface between steel substrate and coating layer.

  • PDF

Technique of Direct Copper to Glass Seal in an Evacuated Tube Solar Collector (진공관형 태양열 집열기의 구리-유리 직접 접합 기술)

  • Kim, Cheol-Young;Lim, Hyong-Bong;Cho, Nam-Kwon;Kwak, Hee-Youl
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.544-551
    • /
    • 2006
  • The sealing technique between a glass tube and a copper heat pipe in an evacuated tube solar collector is studied. In this study two different sealing techniques, such as flame method and furnace firing, are examined. After the sealing of a copper to a glass, the oxidation state of the copper and its bonding morphology were examined by SEM and XRD. Its oxidation was retarded by coating of borate solution on the copper, and $Cu_2O(cuprite)$ turned into CuO(tenorite) with increase in a firing temperature and firing time. Porous structure was found in the oxide layer when CuO formed. The best sealing morphology was observed when the thickness of the oxidation layer was less than $20{\mu}m$. The sealing technique performed in a furnace was promising and the satisfactory result was obtained when the sample was fired at $950^{\circ}C$ for 5 min under $N_2$ atmosphere. Annealing procedure is recommended to remove the stress left at the bonding zone.

A study on the crystalline orientation and electric properties of sol-gel PZT thin film for piezoelectric sensors (졸겔 법으로 제조한 압전 센서용 PZT 박막의 결정 배향 및 전기적 특성 연구)

  • Byun, Jin-Moo;Lee, Ho-Nyun;Lee, Hong-Kee;Lee, Seong-Eui;Lee, Hee-Chul
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.202-208
    • /
    • 2010
  • This study examined the dependency of crystalline orientation and electric properties of sol-gel PZT film on hydrolysis, a $PbTiO_3$ seed layer and a concentration of sol-gel solution. The PZT thin films were prepared by using 2-Methoxyethanol-based sol-gel method and spin-coating on Pt/Ti/$SiO_2$/Si substrates. The 1-${\mu}m$-thick PZT films were coated and then fired in a furnace by direct insert method. The highly (111) oriented PZT film of pure perovskite structure could be obtained. We could control the degree of orientation by various parameters such as hydrolysis, a $PbTiO_3$ seed layer and a concentration of sol-gel solution. The highest measured remanent polarization, dielectric constant and piezoelectric coefficient are $24.16\;{\mu}C/cm^2$, 2808, and 159 pC/N, respectively.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.