• Title/Summary/Keyword: Direct Emissions

Search Result 353, Processing Time 0.026 seconds

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.

A Study on the Establishment of Greenhouse Gas Inventory in Korean Railroad (국내 철도분야의 온실가스 인벤토리 구축에 관한 연구)

  • Lee, Jae-Young;Jung, Woo-Sung;Cho, Young-Min;Kim, Hee-Man
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1371-1373
    • /
    • 2008
  • Recently, the reduction of greenhouse gas (GHG) is the most important international issue. In order to control efficiently GHG emissions and reduction, it is essential to establish GHG inventory preferentially. The aim of this study was to establish the GHG inventory of Korean railroad. The GHG sources were divided into direct and indirect emissions. The GHG released from the operation of rolling stocks was classified according to operating line and the kind of car. Finally, the GHG emission of Korean railroad can be managed systematically using this GHG inventory.

  • PDF

Effect of Swirl Angles in Low-Swirl Combustor (저선회 연소기의 선회각도에 따른 영향)

  • Jeong, Hwanghui;Choi, Inchan;Lee, Keeman
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.123-125
    • /
    • 2015
  • A study has been conducted to investigate the effect of swirl angle in low swirl combustor. In this study, the employed swirl angles were $28^{\circ}$, $32^{\circ}$ and $37^{\circ}$. Direct flame photos show that the width of the flame is expanded and the length of the flame is shortened when swirl angle is increased. Also, as the swirl angle was increased, the flame stability region could be widened due to the expansion of lower flammable limit. Between 3 and 7kW, CO emissions was below 10 ppm and NOx emissions was also below 27 ppm at $O_2$ 15% basis over the lean burning range of 0.6 < ${\Phi}$ < 0.9. From this investigation of stability expansion effect and emission performance, it was identified that the swirl angle $37^{\circ}$ is most suitable swirling condition in the low swirl model combustor.

  • PDF

Improving Performance and Emissions in a Diesel Engine Dual Fueled with Compressed Natural Gas (CNG와 경유의 2원 연료 디젤기관의 성능 및 배출가스 개선을 위한 실험연구)

  • ;Masahiro Shioji
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.57-63
    • /
    • 2000
  • This paper deals with a study on combustion and emission characteristics of a direct injection diesel engine dual fueled with natural gas. Dual fuelling systems tend to emit high unburned fuel especially at low load, resulting in a decreased thermal efficiency. This is because natural gas-air mixtures are too lean for flame to propagate under low load conditions. Suction air quantity and injection timing controls are very useful to improve emissions and thermal efficiency at low load.

  • PDF

Testing the pollution haven hypothesis on the pathway of sustainable development: Accounting the role of nuclear energy consumption

  • Danish, Danish;Ud-Din Khan, Salah;Ahmad, Ashfaq
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2746-2752
    • /
    • 2021
  • The environmental effects of China's nuclear energy consumption in a dynamic framework of the pollution haven hypothesis are examined. This study uses a dynamic autoregressive distributed lag simulation approach. Empirical evidence confirms that the pollution haven hypothesis does not exist for China; i.e., foreign direct investment plays a promising role in influencing environmental outcomes. Furthermore, empirical results concluded positive contribution of nuclear energy in pollution mitigation. From the results it is expected that encouraging foreign investment to increase generation of nuclear energy would benefit environmental quality by reducing CO2 emissions.

Data Build-up for the Construction of Korean Specific Greenhouse Gas Emission Inventory in Livestock Categories

  • Won, S.G.;Cho, W.S.;Lee, J.E.;Park, K.H.;Ra, C.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.3
    • /
    • pp.439-446
    • /
    • 2014
  • Many studies on methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from livestock industries have revealed that livestock production directly contributes to greenhouse gas (GHG) emissions through enteric fermentation and manure management, which causes negative impacts on animal environment sustainability. In the present study, three essential values for GHG emission were measured; i.e., i) maximum $CH_4$ producing capacity at mesophilic temperature ($37^{\circ}C$) from anaerobically stored manure in livestock category ($B_{0,KM}$, Korean livestock manure for $B_0$), ii) $EF_{3(s)}$ value representing an emission factor for direct $N_2O$ emissions from manure management system S in the country, kg $N_2O-N$ kg $N^{-1}$, at mesophilic ($37^{\circ}C$) and thermophilic ($55^{\circ}C$) temperatures, and iii) $N_{ex(T)}$ emissions showing annual N excretion for livestock category T, kg N $animal^{-1}$ $yr^{-1}$, from different livestock manure. Static incubation with and without aeration was performed to obtain the $N_2O$ and $CH_4$ emissions from each sample, respectively. Chemical compositions of pre- and post- incubated manure were analyzed. Contents of total solids (% TS) and volatile solid (% VS), and the ratio of carbon to nitrogen (C/N) decrease significantly in all the samples by C-containing biogas generation, whereas moisture content (%) and pH increased after incubation. A big difference of total nitrogen content was not observed in pre- and post-incubation during $CH_4$ and $N_2O$ emissions. $CH_4$ emissions (g $CH_4$ kg VS-1) from all the three manures (sows, layers and Korean cattle) were different and high C/N ratio resulted in high $CH_4$ emission. Similarly, $N_2O$ emission was found to be affected by % VS, pH, and temperature. The $B_{0,KM}$ values for sows, layers, and Korean cattle obtained at $37^{\circ}C$ are 0.0579, 0.0006, and 0.0828 $m^3$ $CH_4$ kg $VS^{-1}$, respectively, which are much less than the default values in IPCC guideline (GL) except the value from Korean cattle. For sows and Korean cattle, $N_{ex(T)}$ values of 7.67 and 28.19 kg N $yr^{-1}$, respectively, are 2.5 fold less than those values in IPCC GL as well. However, $N_{ex(T)}$ value of layers 0.63 kg N $yr^{-1}$ is very similar to the default value of 0.6 kg N $yr^{-1}$ in IPCC GLs for National greenhouse gas inventories for countries such as South Korea/Asia. The $EF_{3(s)}$ value obtained at $37^{\circ}C$ and $55^{\circ}C$ were found to be far less than the default value.

A Study on the Characteristics for Durability with Biodiesel Fuel(BDF 5%) in a Commercial Common Rail Diesel Engine (커먼레일 디젤기관에서 바이오디젤유(BDF 5%) 적용시의 내구특성 연구)

  • Choi, Seung-Hun;Oh, Young-Taig
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.22-27
    • /
    • 2007
  • Our environment is faced with serious problems related to the air pollution from automobiles in these days. In particular, the exhaust emissions of diesel engines are recognized as main causes of the air pollution. CRDI(common rail direct injection) diesel engine is widely used for the sake of minimization on exhaust emission. Because biodiesel fuel is a renewable and alternative fuel for diesel engine, its usability is expanded. In this study, a common rail diesel engine was run with 5% of biodiesel fuel(BDF 5%) more than 150 hours. Engine dynamometer testing was completed at regularly scheduled intervals to investigate the engine performance and exhaust emissions. The data of engine performance and exhaust emissions was sampled at 1 hour intervals for analysis. When a common rail diesel engine runs on BDF 5% for long time, power and energy consumption of the engine are similar to the case using diesel fuel. The smoke emission of BDF 5% was reduced in comparison with diesel fuel, that is, it was reduced approximately 15% at 4000rpm, and load of 90%. And, CO and $CO_2$ were reduced, too. On the other hand, NOx emission of biodiesel fuel was slightly increased about 2%, but it was almost same as a commercial diesel fuel.

Assessment of Integrated N2O Emission Factor for Korea Upland Soils Cultivated with Red Pepper, Soy Bean, Spring Cabbage, Autumn Cabbage and Potato

  • Kim, Gun-Yeob;Na, Un-Sung;Lee, Sun-Il;Jeong, Hyun-Cheol;Kim, Pil-Joo;Lee, Jong-Eun;Seo, Young-Ho;Lee, Jong-Sik;Choi, Eun-Jung;Suh, Sang-Uk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.49 no.6
    • /
    • pp.720-730
    • /
    • 2016
  • Greenhouse-gas emission factors are widely used to estimate emissions arising from a defined unit of a specific activity. Such estimates are used both for international reporting to the United Nations Framework Convention on Climate Change (UNFCCC) and for myriad national and sub-national reporting purposes (for example, European Union Emissions Trading Scheme; EU ETS). As with the other so-called 'Kyoto protocol GHGs', the Intergovernmental Panel on Climate Change (IPCC) provides a methodology for national and sub-national estimation of $N_2O$ emissions, based on the sector from which the emissions arise. The objective of this study was to develop a integrated emission factor to estimate the direct $N_2O$ emission from an agricultural field cultivated with the red pepper, soy bean, spring cabbage, autumn cabbage and potato in 2010~2012. Emission factor of $N_2O$ calculated using accumulated $N_2O$ emission, N fertilization rate, and background $N_2O$ emission over three year experiment was $0.00596{\pm}0.001337kg$ $N_2O-N(N\;kg)^{-1}$. More extensive studies need to be conducted to develop $N_2O$ emission factors for other upland crops in the various regions of Korea because $N_2O$ emission is influenced by many factors including climate characteristics, soil properties, and agricultural practices.

Management of GHG Emissions from the Public Organizaions in Land and Housing Construction Sector (토지·주택 건설부문 공공기관의 온실가스 배출량 관리방안 고찰)

  • Lee, Ki-Hong;Yoo, Jung-Hyun;Rhim, Joo-Ho;Jeon, Seon-Jeong
    • Land and Housing Review
    • /
    • v.2 no.3
    • /
    • pp.307-313
    • /
    • 2011
  • This study was aimed to suggest a management strategy of GHG emissions for the public organizations in land and housing costruction sector. As public organizations' businesses are characterized as 'public' and 'comprehensive', these characteristics should be considered in scoping emissions, setting-up reduction target, building GHG inventory, and establishing management system. Since public organizations' activities in construction sector involve a wide range of social infrastructure construction projects, it is not easy to account their actions to reduce GHG emissions quantitatively. Therefore, this study suggested that a twofold approach is suitable for public organizations in construction area, classifying the measurable reductions and the immeasurable actions according to the their business characteristics. To give a concrete example, a GHG emission management system for the Korea Land and Housing Corporation (LH) was proposed.

A Study on the exhaust gas characteristics of the vehicle gasoline according to the ambient temperature (대기온도에 따른 휘발유 자동차의 배출가스 특성에 관한 연구)

  • Lim, Jae-Hyuk;Kim, Ki-Ho;Kim, Sung-Woo;Lee, Min-Ho;Oh, Sang-Gi
    • Journal of Power System Engineering
    • /
    • v.19 no.6
    • /
    • pp.47-53
    • /
    • 2015
  • Korea is the geographic location during the summer, the temperature rising to $35^{\circ}C$ and winter temperature is $-15^{\circ}C$ to reduce the air temperature changes, such as relatively large compared to other countries. This increase or decrease of the harmful exhaust gas discharged from automobile substantially inconvenience a significant impact on the active side of the car engine temperature and exhaust gas reducing device receives a large impact on the atmospheric temperature is regulation to be different. However, domestic vehicle emissions test temperature of $20{\sim}30^{\circ}C$ is it does not reflect this situation the actual test temperature to accurately measure the exhaust gas volume of the vehicle is difficult. In this study, domestic automobile exhaust gas test conditions of a test temperature $20{\sim}30^{\circ}C$ various temperatures, including (35, 25, 0, -7, -15, $-25^{\circ}C$) under the two vehicles (2.0L MPI, 2.4 L GDI) as was discussed with respect to the exhaust gas characteristics of the vehicle according to the ambient temperature gas. As a result, domestic emissions test temperature of $25^{\circ}C$ than average conditions were temperature decreases greenhouse gas emissions and increase overall increased by up to 15 times higher. Air temperature and the engine exhaust gas inconvenience a direct effect on the activation temperature required in the reduction unit is determined to be an increase of emissions and greenhouse gases, and also an increase in the variety of lubricants based lubricating and viscosity reduction, such as the engine oil due to the low temperature of these result It is considered that shows the.