• Title/Summary/Keyword: Direct Carbon Fuel Cells

Search Result 47, Processing Time 0.018 seconds

Effects of anode and current collector materials on the power density of solid oxide electrolyte direct carbon fuel cell (고체산화물 전해질 직접탄소 연료전지의 전극 및 집전부 재질이 출력밀도에 미치는 영향)

  • Hwang, J.Y.;Yoon, J.E.;Kang, K.;Kim, J.H.;Lee, B.J.
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.392-394
    • /
    • 2009
  • Direct Carbon Fuel Cells (DCFCs) generates electricity directly converting the chemical energy in coal. In the present study, effects of anode and current collector materials on the power density of DCFC are investigated experimentally. The adopted DCFC system is combined type of solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) with the use of a liquid-molten salt anode and a solid oxide electrolyte, proposed by SRI. Power densities of 25 mm button cells with various combination of anode materials and current collector materials are measured.

  • PDF

Methanol oxidation behaviors of PtRu nanoparticles deposited onto binary carbon supports for direct methanol fuel cells

  • Park, Soo-Jin;Park, Jeong-Min;Lee, Seul-Yi
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.121-125
    • /
    • 2013
  • In this study, PtRu nanoparticles deposited on binary carbon supports were developed for use in direct methanol fuel cells using carbon blacks (CBs) and multi-walled carbon nanotubes (MWCNTs). The particle sizes and morphological structures of the catalysts were analyzed using X-ray diffraction and transmission electron microscopy, and the PtRu loading content was determined using an inductively coupled plasma-mass spectrometer. The electrocatalytic characteristics for methanol oxidation were evaluated by means of cyclic voltammetry with 1 M $CH_3OH$ in a 0.5 M $H_2SO_4$ solution as the electrolyte. The PtRu particle sizes and the loading level were found to be dependent on the mixing ratio of the two carbon materials. The electroactivity of the catalysts increased with an increasing MWCNT content, reaching a maximum at 30% MWCNTs, and subsequently decreased. This was attributed to the introduction of MWCNTs as a secondary support, which provided a highly accessible surface area and caused morphological changes in the carbon supports. Consequently, the PtRu nanoparticles deposited on the binary support exhibited better performance than those deposited on the single support, and the best performance was obtained when the mass ratio of CBs to MWCNTs was 70:30.

Influence of defective sites in Pt/C catalysts on the anode of direct methanol fuel cell and their role in CO poisoning: a first-principles study

  • Kwon, Soonchul;Lee, Seung Geol
    • Carbon letters
    • /
    • v.16 no.3
    • /
    • pp.198-202
    • /
    • 2015
  • Carbon-supported Pt catalyst systems containing defect adsorption sites on the anode of direct methanol fuel cells were investigated, to elucidate the mechanisms of H2 dissociation and carbon monoxide (CO) poisoning. Density functional theory calculations were carried out to determine the effect of defect sites located neighboring to or distant from the Pt catalyst on H2 and CO adsorption properties, based on electronic properties such as adsorption energy and electronic band gap. Interestingly, the presence of neighboring defect sites led to a reduction of H2 dissociation and CO poisoning due to atomic Pt filling the defect sites. At distant sites, H2 dissociation was active on Pt, but CO filled the defect sites to form carbon π-π bonds, thus enhancing the oxidation of the carbon surface. It should be noted that defect sites can cause CO poisoning, thereby deactivating the anode gradually.

Degradation Comparison of Hydrogen and Internally Reformed Methane-Fueled Solid Oxide Fuel Cells

  • Kim, Young Jin;Lee, Hyun Mi;Lim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.483-488
    • /
    • 2016
  • Anode supported solid oxide fuel cells (SOFCs), consisting of Ni+YSZ anode, YSZ electrolyte, and LSM+YSZ cathode, were fabricated and constant current tested with direct internal reforming of methane (steam to carbon ratio ~ 2) as well as hydrogen fuel at $800^{\circ}C$. The cell, operated under direct internal reforming conditions, showed relatively rapid degradation (~ 1.6 % voltage drop) for 95 h; the cells with hydrogen fuel operated stably for 170 h. Power density and impedance spectra were also measured before and after the tests, and post-test analyses were conducted on the anode parts using SEM / EDS. The results indicate that the performance degradation of the cell operated with internal reforming can be attributed to carbon depositions on the anode, which increase the resistance against anode gas transport and deactivate the Ni catalyst. Thus, the present study shows that direct internal reforming SOFCs cannot be stably operated even under the condition of S/C ratio of ~ 2, probably due to non-uniform mixture (methane and steam) gas flow.

A Study on the Suppression of Carbon Deposition in Solid Oxide Fuel Cells Through Methane Internal Reforming (메탄 내부개질 반응을 통한 고체산화물 연료전지의 탄소침적 억제에 관한 연구)

  • Kang, Yun-Hyeok;Lim, Sung-Kwang;Yoo, Yung-Sung;Park, Jin-Woo;Bae, Joong-Myeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.473-481
    • /
    • 2007
  • Compared to other types of fuel cells, SOFC has advantages like a wide output range and the direct use of hydrocarbon fuel without the process of external reforming. Particularly because the direct use of fuel without reforming reaction is closely linked to overall system efficiency, it is a very attractive advantage. We tried the operation with methane. However, although methane has a small number of carbons compared to other hydrocarbon fuels, our experiment found the deposition of carbon on the surface of the SOFC electrode. To overcome the problem, we tried the operation through activating internal reforming. The reason that internal reforming was possible was that SOFC runs at high temperature compared to other fuel cells and its electrode is made of Ni, which functions as a catalyst favorable for steam reforming.

Fabrication of Electrolyte for Direct Carbon Fuel Cell and Evaluation of Properties of Direct Carbon Fuel Cell (직접탄소 연료전지용 전해질 제조 및 직접탄소 연료전지 특성 평가)

  • Pi, Seuk-Hoon;Cho, Min-Je;Lee, Jong-Won;Lee, Seung-Bok;Lim, Tak-Hyoung;Park, Seok-Joo;Song, Rak-Hyun;Shin, Dong-Ryul
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.786-789
    • /
    • 2011
  • In order to estimate the possibility of applying electrolytes generally used in solid oxide fuel cells(SOFCs) to direct carbon fuel cells(DCFCs), properties of YSZ(yttria stabilized zirconia) electrolyte were evaluated. In this study, vacuum slurry coating method was adapted to coat thin layer on anode support substrate. After sintering the electrolyte at $1400^{\circ}C$ for 5hrs, microstructure was analyzed by using SEM image. Also, gas permeability and ionic conductivity were measured to find out the potential possibility of electrolyte for DCFCs. The YSZ electrolyte represented dense coating layer and low gas permeability value. The ionic conductivity of YSZ electrolyte was high over $800^{\circ}C$. After measurement of the electrolyte properties, direct carbon fuel cell was fabricated and its performance was measured at $800^{\circ}C$.

Fabrication and Electrochemical Characterization of LSM/GDC based Cathode Supported Direct Carbon Fuel Cells (직접탄소 연료전지용 LSM/GDC 공기극 지지체 제조 및 전기화학 특성 평가)

  • Ahmed, Bilal;Wahyudi, Wandi;Lee, Seung-Bok;Song, Rak-Hyun;Lee, Jong-Won;Lim, Tak-Hyoung;Park, Seok-Joo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.3
    • /
    • pp.230-236
    • /
    • 2013
  • In this study, successive coating and co-sintering techniques have been used to fabricate LSM/GDC based cathode supported direct carbon fuel cells. The porous LSM/GDC cathode substrate, dense, thin and crack free GDC and ScSZ layers as bi-layer electrolyte, and a porous Ni/ScSZ anode layer was obtained by co-firing at $1400^{\circ}C$. The porous structure of LSM/GDC cathode substrate, after sintering at $1400^{\circ}C$, was obtained due to the presence of GDC phase, which inhibits sintering of LSM because of its higher sintering temperature. The electrochemical characterization of assembled cell was carried out with air as an oxidant and carbon particles in molten carbonate as fuel. The measured open circuit voltages (OCVs) were obtained to be more than 0.99 V, independent of testing temperature. The peak power densities were 116, 195 and $225mWcm^{-2}$ at 750, 800 and $850^{\circ}C$, respectively.

Fabrication and Characterization of Cu-Ni- YSZ SOFC Anodes for Direct Utilization of Methane via Cu pulse plating (펄스 도금법에 의한 메탄연료 직접 사용을 위한 Cu-Ni-YSZ SOFC 연료극 제조 및 특성평가)

  • Park, Eon-Woo;Moon, Hwan;Lee, Jong-Jin;Hyun, Sang-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.12
    • /
    • pp.807-814
    • /
    • 2008
  • The Cu-Ni-YSZ cermet anodes for direct use of methane in solid oxide fuel cells have been fabricated by electroplating Cu into the porous Ni-YSZ cermet anode. The uniform distribution of Cu in the Ni-YSZ anode could be obtained via pulse electroplating in the aqueous solution mixture of $CuSO_4{\cdot}5H_{2}O$ and ${H_2}{SO_4}$ for 30 min with 0.05 A of average applied current. The power density ($0.17\;Wcm^{-2}$) of a single cell with a Cu-Ni-YSZ anode was shown to be slightly lower in methane at $700^{\circ}C$, compared with the power density ($0.28\;Wcm^{-2}$) of a single cell with a Ni-YSZ anode. However, the performance of the Ni-YSZ anode-supported single cell was abruptly degraded over 21 h because of carbon deposition, whereas the Cu-Ni-YSZ anode-supported single cell showed the enhanced durability upto 52 h.