• Title/Summary/Keyword: Dipole-dipole resistivity survey

Search Result 77, Processing Time 0.029 seconds

Subsurface Imaging by a Small-loop EM Survey (소형루프 전자탐사법에 의한 지하 영상화)

  • Lim Jin-Taik;Cho In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • A small-loop electromagnetic (EM) system using multiple frequencies has advantages in survey speed and cost despite of limitation on its depth of investigation. Therefore, small-loop EM surveys have been frequently used on various site investigations involving engineering and environmental problems. We have developed a subsurface imaging technique using small loop EM data. We used a one-dimensional (ID) inversion method to reconstruct a subsurface image from frequency EM sounding data. Tests using simulated data show that the method can reasonably recover the subsurface resistivity structure. Also, the method was tested on field data obtained with multiple frequency small loop EM system at a farm in Chunchon, Korea. The resistivity image obtained form field data compares favorably with the image from the dipole-dipole resistivity survey.

Electrical resistivity tomography survey for prediction of anomaly in mechanized tunneling

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.93-104
    • /
    • 2019
  • Anomalies and/or fractured grounds not detected by the surface geophysical and geological survey performed during design stage may cause significant problems during tunnel excavation. Many studies on prediction methods of the ground condition ahead of the tunnel face have been conducted and applied in tunneling construction sites, such as tunnel seismic profiling and probe drilling. However, most such applications have focused on the drill and blast tunneling method. Few studies have been conducted for mechanized tunneling because of the limitation in the available space to perform prediction tests. This study aims to predict the ground condition ahead of the tunnel face in TBM tunneling by using an electrical resistivity tomography survey. It compared the characteristics of each electrode array and performed an investigation on in-situ tunnel boring machine TBM construction site environments. Numerical simulations for each electrode array were performed, to determine the proper electrode array to predict anomalies ahead of the tunnel face. The results showed that the modified dipole-dipole array is, compared to other arrays, the best for predicting the location and condition of an anomaly. As the borehole becomes longer, the measured data increase accordingly. Therefore, longer boreholes allow a more accurate prediction of the location and status of anomalies and complex grounds.

An Electrical Resistivity Survey for Leachate Investigation at a Solid Waste Landfill (폐기물 매립지 침출수 조사를 위한 전기비저항 탐사)

  • Lee, Keun-Soo;Cho, In-Ky;Mok, Jong-Koo;Kim, Jeong-Woo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The electrical resistivity method is an effective geophysical tool to detect subsurface contamination because the contaminated zones show generally lower electrical resistivity. In this study, the electrical resistivity surveys were applied to a waste landfill site to image the subsurface structure around the landfill and to identify the contaminated zones. First, the dipole-dipole 2D resistivity surveys were conducted along the boundaries of landfill to define the developed contaminated zones. Then the crosshole resistivity tomography was applied to confirm the suspected contaminated zones at depth. The results of drilling and geochemical analysis of ground water supported that the low resistivity zones coincide well with the contaminated zones and the leachate pathways could be delineated effectively from the resistivity survey.

Application of Geophysical Survey for Detecting the Skarn Ore Deposit (스카른광체를 탐지하기 위한 물리탐사 적용)

  • Park, Chung-Hwa;Jung, Yeon-Ho;Lee, Yong-Dong;Park, Jong-Oh
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.71-78
    • /
    • 2010
  • The Gagok mine is a contact metasomatic deposit, located at Gagok-myeon, Samcheok city and Cheoram-dong, Taebaek city, Gangwon province. The deposit lies within the limestone of Myobong and Pungchon formations, and exists the contact of intrusive granite porphyry. In order to determine the direction and extension of mineralization in the gallery and around the entrance of the ore deposit, we used the ground magnetic survey, the direct current (dc) resistivity survey using dipole-dipole array, and resistivity tomography survey. The ground magnetic survey did not detect the anomalous zone due to ore deposit, while the dc resistivity survey and resistivity tomography survey were successful in delineating the anomalous zone related to the extension of fault toward $N50^{\circ}W$.

A Study on the Applicaton of Electrical Resistivity Survey in the Contaminated Soil and Groundwater Site (토양 및 지하수 오염지역에 대한 전기비저항탐사의 적용성 연구)

  • Chae, Seungheon;Lee, Sangeun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.525-539
    • /
    • 2020
  • A site containing buried solid waste and treated water and oil storage containers from a leather manufacturing plant was studied through soil and groundwater pollution and electrical resistivity surveys with the aim of identifying areas polluted by leachate generated by landfilling with leather waste and leakage wastewater. It was found that TPH and Zn exceeded environmental standards for soil pollution and, for leachate and groundwater, Cr(VI) concentrations exceeded standard levels for groundwater quality. An electrical resistivity survey was used to elucidate soil and groundwater pollution characteristics and diffusion pathways. Ten survey lines were set up with an electrode spacing of 5 m in a dipole-dipole array. The hydraulic characteristics of soil determined by groundwater contamination surveys matched well the low-resistivity-anomaly zones. Electrical resistivity surveys of areas containing contaminated soil and groundwater that have irregular strata due to waste reclamation are thus useful in highlighting vertical and horizontal pollutant diffusion pathways and in monitoring contaminated and potentially contaminated areas.

Interpretation of shallow geological structure by applying GIS to geophysical data (물리탐사자료의 GIS 복합처리에 의한 천부지질구조 해석)

  • 송성호;정형재
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.123-126
    • /
    • 1998
  • We have conducted surface electrical resistivity surveys along with the electrical logging at Bookil-Myun, Chungwon-Goon, Choongchungbuk-Do to determine the depths of basement and water table, and for the purpose of preparing the basic input data for hydrogeologic model combined with GIS. A twenty lines of dipole-dipole array survey and a twenty-five stations of resistivity sounding were performed and ten holes were employed for electrical logging to cross check the surface data. A combined interpretation gave the quantitative information of the shallow geologic structure over the area and we constructed layers using the grid analysis of Arc/info. The constructed layers were turned out to be similar to the geologic structure confirmed from the drilling data and we concluded that the methodology adopted in this study would be applicable to hydrogeologic model setup as a tool of providing the basic input data.

  • PDF

A Study of Feasibility of Dipole-dipole Electric Method to Metallic Ore-deposit Exploration in Korea (국내 금속광 탐사를 위한 쌍극자-쌍극자 전기탐사의 적용성 연구)

  • Min, Dong-Joo;Jung, Hyun-Key;Park, Sam-Gyu;Chon, Hyo-Taek;Kwak, Na-Eun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.3
    • /
    • pp.250-262
    • /
    • 2008
  • In order to assess the feasibility of the dipole-dipole electric method to the investigation of metallic ore deposit, both field data simulation and inversion are carried out for several simplified ore deposit models. Our interest is in a vein-type model, because most of the ore deposits (more than 70%) exist in a vein type in Korea. Based on the fact that the width of the vein-type ore deposits ranges from tens of centimeters to 2m, we change the width and the material property of the vein, and we use 40m-electrode spacing for our test. For the vein-type model with too small width, the low resistivity zone is not detected, even though the resistivity of the vein amounts to 1/300 of that of the surrounding rock. Considering a wide electrode interval and cell size used in the inversion, it is natural that the size of the low resistivity zone is overestimated. We also perform field data simulation and inversion for a vein-type model with surrounding hydrothermal alteration zones, which is a typical structure in an epithermal ore deposits. In the model, the material properties are assumed on the basis of resistivity values directly observed in a mine originated from an epithermal ore deposits. From this simulation, we can also note that the high resistivity value of the vein does not affect the results when the width of the vein is narrow. This indicates that our main target should be surrounding hydrothermal alteration zones rather than veins in field survey. From these results, we can summarize that when the vein is placed at the deep part and the difference of resistivity values between the vein and the surrounding rock is not large enough, we cannot detect low resistivity zone and interpret the subsurface structures incorrectly using the electric method performed at the surface. Although this work is a little simple, it can be used as references for field survey design and field data Interpretation. If we perform field data simulation and inversion for a number of models and provide some references, they will be helpful in real field survey and interpretation.

Application Techniques of 2D-Resistivity Structure for Estimation of Inferred Fracture Zone in Weathered Slope (풍화사면에서의 추정파쇄대 평가를 위한 2차원 전기비저항 구조도 적용 기법)

  • Kim, Jae-Hong;Park, Chal-Sook;Lee, Hyun-Jae;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.323-330
    • /
    • 2009
  • Electrical resistivity survey is applied for estimation of inferred fault and fractured zone in civil engineering and environment field. While 15 m diameter and 3 lines tunnels are excavated. It is recognized that core stone and fractured zone is existed in the weathered slope of the entrance to a tunnel. To make confirmation geological characteristics, dipole-dipole electric resistivity survey was carried out in weathered slope of the entrance to a tunnel. Core stone distribution and fracture zone characteristics are estimated by reverse analysis and 2D-resistivity structure using FDM.

Electrical Surveys at the Seokdae Waste Landfill of Pusan (부산 석대 폐기물 매립지에서의 전기탐사)

  • Kiehwa Lee;Jong-Ryeol Yoon
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.4
    • /
    • pp.185-190
    • /
    • 1997
  • Electrical surveys were conducted at the Seokdae waste landfill in July,1996. Within the landfill, 4 lines of dipole-dipole surveys and 7 Schlumberger soundings were carried out and 2 soundings in front of the landfill. In the landfill, interpretations of the survey data show low resistivity zones below 10 Ωm to a depth of 50 m from the surface and such low resistivity zones of the D block are thicker than those of the other blocks by about 2~10 m. Considering the depth of the bedrock and the height of waste reclamation, no evidence of bedrock contamination by leachate is indicated. But it is inferred that the weathered zones are contaminated in the landfill. In the block A and B, minor fault having the strike of N$70^{\circ}$W have been confirmed by dipole-dipole surveys, so future contamination of the bedrock by leachate is possible The degree of ground contamination is the highest in the D block due to the leachate plume mainly heading for this block. On the other hand, electrical soundings do not indicate ground contamination by leachate in the front area of the landfill.

  • PDF

Geophysical Responses of the Yangsan Fault Zone at Eonyang Area (언양 일대 양산단층에서의 지구물리학적 반응)

  • Kwon Byung-Doo;Lee Heuisoon;Lee Choon-Ki;Park Gyesoon;Oh Seokhoon;Lee Duk Kee
    • Journal of the Korean earth science society
    • /
    • v.26 no.5
    • /
    • pp.436-442
    • /
    • 2005
  • We have performed multiple geophysical surveys comprised of gravity, magnetic and resistivity methods at the Yangsan fault zone which runs through the Eonyang area, the eastern part of Kyeongsang in southeast Korea. The gravity and magnetic data provide information about geological structures. Furthermore, sections of electrical resistivity show the sharp contrast of electrical resistivity distribution across the fault zone. Since the fractured zone tends to be more conductive than fresh host rocks, the electrical resistivity survey is effective in determining the detailed structure of the fault zone. We have made gravity measurements at a total of 71 points alongside two profiles across the fault zone, and carried out an electrical resistivity survey with a dipole-dipole array at the same location using 40m dipole length. In addition, we have analyzed the aeromagnetic data on the corresponding area. The multiple geophysical properties appear to be abruptly changed in electrical resistivity, gravity and aeromagneticclearly show the different appearance across the fault zone. The fault is identified by its sub vertical attitude which is well known in the Yangsan fault zone. We have also confirmed that the magnitude of the response of the fault is much larger in the southern part of the survey area than the northern area. These results most likely to provide basic information for the further studies about the physical properties and the structures at the Yangsan fault.